ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ (ಸಂಕೀರ್ಣ ಪರಿಹಾರ)
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

\left(x-2\right)\left(x+1\right)\times 2=x^{2}\times 3
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ ಯಾವುದೇ -1,0,2 ಮೌಲ್ಯಗಳಿಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು \left(x-2\right)\left(x+1\right)x^{2}, x^{2},\left(x+1\right)\left(x-2\right) ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
\left(x^{2}-x-2\right)\times 2=x^{2}\times 3
x+1 ರಿಂದು x-2 ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
2x^{2}-2x-4=x^{2}\times 3
2 ದಿಂದ x^{2}-x-2 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
2x^{2}-2x-4-x^{2}\times 3=0
ಎರಡೂ ಕಡೆಗಳಿಂದ x^{2}\times 3 ಕಳೆಯಿರಿ.
-x^{2}-2x-4=0
-x^{2} ಪಡೆದುಕೊಳ್ಳಲು 2x^{2} ಮತ್ತು -x^{2}\times 3 ಕೂಡಿಸಿ.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-1\right)\left(-4\right)}}{2\left(-1\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -1, b ಗೆ -2 ಮತ್ತು c ಗೆ -4 ಬದಲಿಸಿ.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-1\right)\left(-4\right)}}{2\left(-1\right)}
ವರ್ಗ -2.
x=\frac{-\left(-2\right)±\sqrt{4+4\left(-4\right)}}{2\left(-1\right)}
-1 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-2\right)±\sqrt{4-16}}{2\left(-1\right)}
-4 ಅನ್ನು 4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-2\right)±\sqrt{-12}}{2\left(-1\right)}
-16 ಗೆ 4 ಸೇರಿಸಿ.
x=\frac{-\left(-2\right)±2\sqrt{3}i}{2\left(-1\right)}
-12 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{2±2\sqrt{3}i}{2\left(-1\right)}
-2 ನ ವಿಲೋಮವು 2 ಆಗಿದೆ.
x=\frac{2±2\sqrt{3}i}{-2}
-1 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{2+2\sqrt{3}i}{-2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{2±2\sqrt{3}i}{-2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2i\sqrt{3} ಗೆ 2 ಸೇರಿಸಿ.
x=-\sqrt{3}i-1
-2 ದಿಂದ 2+2i\sqrt{3} ಭಾಗಿಸಿ.
x=\frac{-2\sqrt{3}i+2}{-2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{2±2\sqrt{3}i}{-2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2 ದಿಂದ 2i\sqrt{3} ಕಳೆಯಿರಿ.
x=-1+\sqrt{3}i
-2 ದಿಂದ 2-2i\sqrt{3} ಭಾಗಿಸಿ.
x=-\sqrt{3}i-1 x=-1+\sqrt{3}i
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
\left(x-2\right)\left(x+1\right)\times 2=x^{2}\times 3
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ ಯಾವುದೇ -1,0,2 ಮೌಲ್ಯಗಳಿಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು \left(x-2\right)\left(x+1\right)x^{2}, x^{2},\left(x+1\right)\left(x-2\right) ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
\left(x^{2}-x-2\right)\times 2=x^{2}\times 3
x+1 ರಿಂದು x-2 ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
2x^{2}-2x-4=x^{2}\times 3
2 ದಿಂದ x^{2}-x-2 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
2x^{2}-2x-4-x^{2}\times 3=0
ಎರಡೂ ಕಡೆಗಳಿಂದ x^{2}\times 3 ಕಳೆಯಿರಿ.
-x^{2}-2x-4=0
-x^{2} ಪಡೆದುಕೊಳ್ಳಲು 2x^{2} ಮತ್ತು -x^{2}\times 3 ಕೂಡಿಸಿ.
-x^{2}-2x=4
ಎರಡೂ ಬದಿಗಳಿಗೆ 4 ಸೇರಿಸಿ. ಯಾವುದಾದರ ಜೊತೆಗೆ ಶೂನ್ಯವನ್ನು ಸೇರಿಸಿದರೆ ಅದೇ ಮೊತ್ತ ಬರುತ್ತದೆ.
\frac{-x^{2}-2x}{-1}=\frac{4}{-1}
-1 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\left(-\frac{2}{-1}\right)x=\frac{4}{-1}
-1 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -1 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}+2x=\frac{4}{-1}
-1 ದಿಂದ -2 ಭಾಗಿಸಿ.
x^{2}+2x=-4
-1 ದಿಂದ 4 ಭಾಗಿಸಿ.
x^{2}+2x+1^{2}=-4+1^{2}
1 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ 2 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ 1 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+2x+1=-4+1
ವರ್ಗ 1.
x^{2}+2x+1=-3
1 ಗೆ -4 ಸೇರಿಸಿ.
\left(x+1\right)^{2}=-3
ಅಪವರ್ತನ x^{2}+2x+1. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+1\right)^{2}}=\sqrt{-3}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+1=\sqrt{3}i x+1=-\sqrt{3}i
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=-1+\sqrt{3}i x=-\sqrt{3}i-1
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 1 ಕಳೆಯಿರಿ.