ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

1-\left(-\left(1+x\right)\left(2+x\right)\times 2\right)=\left(x-1\right)\left(x+2\right)\times 3
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ ಯಾವುದೇ -2,-1,1 ಮೌಲ್ಯಗಳಿಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು \left(x-1\right)\left(x+1\right)\left(x+2\right), x^{3}+2x^{2}-x-2,1-x,x+1 ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
1-\left(-2\left(1+x\right)\left(2+x\right)\right)=\left(x-1\right)\left(x+2\right)\times 3
-2 ಪಡೆದುಕೊಳ್ಳಲು -1 ಮತ್ತು 2 ಗುಣಿಸಿ.
1-\left(-2-2x\right)\left(2+x\right)=\left(x-1\right)\left(x+2\right)\times 3
1+x ದಿಂದ -2 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
1-\left(-4-6x-2x^{2}\right)=\left(x-1\right)\left(x+2\right)\times 3
2+x ರಿಂದು -2-2x ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
1+4+6x+2x^{2}=\left(x-1\right)\left(x+2\right)\times 3
-4-6x-2x^{2} ವಿರುದ್ಧವನ್ನು ಹುಡುಕಲು, ಪ್ರತಿ ಪದದ ವಿರುದ್ಧ ಪದವನ್ನು ಹುಡುಕಿ.
5+6x+2x^{2}=\left(x-1\right)\left(x+2\right)\times 3
5 ಪಡೆದುಕೊಳ್ಳಲು 1 ಮತ್ತು 4 ಸೇರಿಸಿ.
5+6x+2x^{2}=\left(x^{2}+x-2\right)\times 3
x+2 ರಿಂದು x-1 ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
5+6x+2x^{2}=3x^{2}+3x-6
3 ದಿಂದ x^{2}+x-2 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
5+6x+2x^{2}-3x^{2}=3x-6
ಎರಡೂ ಕಡೆಗಳಿಂದ 3x^{2} ಕಳೆಯಿರಿ.
5+6x-x^{2}=3x-6
-x^{2} ಪಡೆದುಕೊಳ್ಳಲು 2x^{2} ಮತ್ತು -3x^{2} ಕೂಡಿಸಿ.
5+6x-x^{2}-3x=-6
ಎರಡೂ ಕಡೆಗಳಿಂದ 3x ಕಳೆಯಿರಿ.
5+3x-x^{2}=-6
3x ಪಡೆದುಕೊಳ್ಳಲು 6x ಮತ್ತು -3x ಕೂಡಿಸಿ.
5+3x-x^{2}+6=0
ಎರಡೂ ಬದಿಗಳಿಗೆ 6 ಸೇರಿಸಿ.
11+3x-x^{2}=0
11 ಪಡೆದುಕೊಳ್ಳಲು 5 ಮತ್ತು 6 ಸೇರಿಸಿ.
-x^{2}+3x+11=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-3±\sqrt{3^{2}-4\left(-1\right)\times 11}}{2\left(-1\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -1, b ಗೆ 3 ಮತ್ತು c ಗೆ 11 ಬದಲಿಸಿ.
x=\frac{-3±\sqrt{9-4\left(-1\right)\times 11}}{2\left(-1\right)}
ವರ್ಗ 3.
x=\frac{-3±\sqrt{9+4\times 11}}{2\left(-1\right)}
-1 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-3±\sqrt{9+44}}{2\left(-1\right)}
11 ಅನ್ನು 4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-3±\sqrt{53}}{2\left(-1\right)}
44 ಗೆ 9 ಸೇರಿಸಿ.
x=\frac{-3±\sqrt{53}}{-2}
-1 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{\sqrt{53}-3}{-2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-3±\sqrt{53}}{-2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. \sqrt{53} ಗೆ -3 ಸೇರಿಸಿ.
x=\frac{3-\sqrt{53}}{2}
-2 ದಿಂದ -3+\sqrt{53} ಭಾಗಿಸಿ.
x=\frac{-\sqrt{53}-3}{-2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-3±\sqrt{53}}{-2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -3 ದಿಂದ \sqrt{53} ಕಳೆಯಿರಿ.
x=\frac{\sqrt{53}+3}{2}
-2 ದಿಂದ -3-\sqrt{53} ಭಾಗಿಸಿ.
x=\frac{3-\sqrt{53}}{2} x=\frac{\sqrt{53}+3}{2}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
1-\left(-\left(1+x\right)\left(2+x\right)\times 2\right)=\left(x-1\right)\left(x+2\right)\times 3
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ ಯಾವುದೇ -2,-1,1 ಮೌಲ್ಯಗಳಿಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು \left(x-1\right)\left(x+1\right)\left(x+2\right), x^{3}+2x^{2}-x-2,1-x,x+1 ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
1-\left(-2\left(1+x\right)\left(2+x\right)\right)=\left(x-1\right)\left(x+2\right)\times 3
-2 ಪಡೆದುಕೊಳ್ಳಲು -1 ಮತ್ತು 2 ಗುಣಿಸಿ.
1-\left(-2-2x\right)\left(2+x\right)=\left(x-1\right)\left(x+2\right)\times 3
1+x ದಿಂದ -2 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
1-\left(-4-6x-2x^{2}\right)=\left(x-1\right)\left(x+2\right)\times 3
2+x ರಿಂದು -2-2x ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
1+4+6x+2x^{2}=\left(x-1\right)\left(x+2\right)\times 3
-4-6x-2x^{2} ವಿರುದ್ಧವನ್ನು ಹುಡುಕಲು, ಪ್ರತಿ ಪದದ ವಿರುದ್ಧ ಪದವನ್ನು ಹುಡುಕಿ.
5+6x+2x^{2}=\left(x-1\right)\left(x+2\right)\times 3
5 ಪಡೆದುಕೊಳ್ಳಲು 1 ಮತ್ತು 4 ಸೇರಿಸಿ.
5+6x+2x^{2}=\left(x^{2}+x-2\right)\times 3
x+2 ರಿಂದು x-1 ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
5+6x+2x^{2}=3x^{2}+3x-6
3 ದಿಂದ x^{2}+x-2 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
5+6x+2x^{2}-3x^{2}=3x-6
ಎರಡೂ ಕಡೆಗಳಿಂದ 3x^{2} ಕಳೆಯಿರಿ.
5+6x-x^{2}=3x-6
-x^{2} ಪಡೆದುಕೊಳ್ಳಲು 2x^{2} ಮತ್ತು -3x^{2} ಕೂಡಿಸಿ.
5+6x-x^{2}-3x=-6
ಎರಡೂ ಕಡೆಗಳಿಂದ 3x ಕಳೆಯಿರಿ.
5+3x-x^{2}=-6
3x ಪಡೆದುಕೊಳ್ಳಲು 6x ಮತ್ತು -3x ಕೂಡಿಸಿ.
3x-x^{2}=-6-5
ಎರಡೂ ಕಡೆಗಳಿಂದ 5 ಕಳೆಯಿರಿ.
3x-x^{2}=-11
-11 ಪಡೆದುಕೊಳ್ಳಲು -6 ದಿಂದ 5 ಕಳೆಯಿರಿ.
-x^{2}+3x=-11
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
\frac{-x^{2}+3x}{-1}=-\frac{11}{-1}
-1 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\frac{3}{-1}x=-\frac{11}{-1}
-1 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -1 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-3x=-\frac{11}{-1}
-1 ದಿಂದ 3 ಭಾಗಿಸಿ.
x^{2}-3x=11
-1 ದಿಂದ -11 ಭಾಗಿಸಿ.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=11+\left(-\frac{3}{2}\right)^{2}
-\frac{3}{2} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -3 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{3}{2} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-3x+\frac{9}{4}=11+\frac{9}{4}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{3}{2} ವರ್ಗಗೊಳಿಸಿ.
x^{2}-3x+\frac{9}{4}=\frac{53}{4}
\frac{9}{4} ಗೆ 11 ಸೇರಿಸಿ.
\left(x-\frac{3}{2}\right)^{2}=\frac{53}{4}
ಅಪವರ್ತನ x^{2}-3x+\frac{9}{4}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{53}{4}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-\frac{3}{2}=\frac{\sqrt{53}}{2} x-\frac{3}{2}=-\frac{\sqrt{53}}{2}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{\sqrt{53}+3}{2} x=\frac{3-\sqrt{53}}{2}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{3}{2} ಸೇರಿಸಿ.