x ಪರಿಹರಿಸಿ
x=-\frac{10397}{12500}=-0.83176
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
-x^{2}=83176\times 10^{-5}x
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮನಾಗಿರಬಾರದು. x ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
-x^{2}=83176\times \frac{1}{100000}x
-5 ನ ಘಾತಕ್ಕೆ 10 ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು \frac{1}{100000} ಪಡೆಯಿರಿ.
-x^{2}=\frac{10397}{12500}x
\frac{10397}{12500} ಪಡೆದುಕೊಳ್ಳಲು 83176 ಮತ್ತು \frac{1}{100000} ಗುಣಿಸಿ.
-x^{2}-\frac{10397}{12500}x=0
ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{10397}{12500}x ಕಳೆಯಿರಿ.
x\left(-x-\frac{10397}{12500}\right)=0
x ಅಪವರ್ತನಗೊಳಿಸಿ.
x=0 x=-\frac{10397}{12500}
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, x=0 ಮತ್ತು -x-\frac{10397}{12500}=0 ಪರಿಹರಿಸಿ.
x=-\frac{10397}{12500}
x ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮಾನಾಗಿರಬಾರದು.
-x^{2}=83176\times 10^{-5}x
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮನಾಗಿರಬಾರದು. x ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
-x^{2}=83176\times \frac{1}{100000}x
-5 ನ ಘಾತಕ್ಕೆ 10 ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು \frac{1}{100000} ಪಡೆಯಿರಿ.
-x^{2}=\frac{10397}{12500}x
\frac{10397}{12500} ಪಡೆದುಕೊಳ್ಳಲು 83176 ಮತ್ತು \frac{1}{100000} ಗುಣಿಸಿ.
-x^{2}-\frac{10397}{12500}x=0
ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{10397}{12500}x ಕಳೆಯಿರಿ.
x=\frac{-\left(-\frac{10397}{12500}\right)±\sqrt{\left(-\frac{10397}{12500}\right)^{2}}}{2\left(-1\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -1, b ಗೆ -\frac{10397}{12500} ಮತ್ತು c ಗೆ 0 ಬದಲಿಸಿ.
x=\frac{-\left(-\frac{10397}{12500}\right)±\frac{10397}{12500}}{2\left(-1\right)}
\left(-\frac{10397}{12500}\right)^{2} ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{\frac{10397}{12500}±\frac{10397}{12500}}{2\left(-1\right)}
-\frac{10397}{12500} ನ ವಿಲೋಮವು \frac{10397}{12500} ಆಗಿದೆ.
x=\frac{\frac{10397}{12500}±\frac{10397}{12500}}{-2}
-1 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{\frac{10397}{6250}}{-2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{\frac{10397}{12500}±\frac{10397}{12500}}{-2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{10397}{12500} ಗೆ \frac{10397}{12500} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
x=-\frac{10397}{12500}
-2 ದಿಂದ \frac{10397}{6250} ಭಾಗಿಸಿ.
x=\frac{0}{-2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{\frac{10397}{12500}±\frac{10397}{12500}}{-2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. ಸಾಮಾನ್ಯ ಛೇದ ಮತ್ತು ಅಂಶಗಳನ್ನು ಕಳೆಯುವಿಕೆಯನ್ನು ಹುಡುಕುವ ಮೂಲಕ \frac{10397}{12500} ದಿಂದ \frac{10397}{12500} ಕಳೆಯಿರಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
x=0
-2 ದಿಂದ 0 ಭಾಗಿಸಿ.
x=-\frac{10397}{12500} x=0
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
x=-\frac{10397}{12500}
x ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮಾನಾಗಿರಬಾರದು.
-x^{2}=83176\times 10^{-5}x
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮನಾಗಿರಬಾರದು. x ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
-x^{2}=83176\times \frac{1}{100000}x
-5 ನ ಘಾತಕ್ಕೆ 10 ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು \frac{1}{100000} ಪಡೆಯಿರಿ.
-x^{2}=\frac{10397}{12500}x
\frac{10397}{12500} ಪಡೆದುಕೊಳ್ಳಲು 83176 ಮತ್ತು \frac{1}{100000} ಗುಣಿಸಿ.
-x^{2}-\frac{10397}{12500}x=0
ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{10397}{12500}x ಕಳೆಯಿರಿ.
\frac{-x^{2}-\frac{10397}{12500}x}{-1}=\frac{0}{-1}
-1 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\left(-\frac{\frac{10397}{12500}}{-1}\right)x=\frac{0}{-1}
-1 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -1 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}+\frac{10397}{12500}x=\frac{0}{-1}
-1 ದಿಂದ -\frac{10397}{12500} ಭಾಗಿಸಿ.
x^{2}+\frac{10397}{12500}x=0
-1 ದಿಂದ 0 ಭಾಗಿಸಿ.
x^{2}+\frac{10397}{12500}x+\left(\frac{10397}{25000}\right)^{2}=\left(\frac{10397}{25000}\right)^{2}
\frac{10397}{25000} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ \frac{10397}{12500} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ \frac{10397}{25000} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+\frac{10397}{12500}x+\frac{108097609}{625000000}=\frac{108097609}{625000000}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ \frac{10397}{25000} ವರ್ಗಗೊಳಿಸಿ.
\left(x+\frac{10397}{25000}\right)^{2}=\frac{108097609}{625000000}
ಅಪವರ್ತನ x^{2}+\frac{10397}{12500}x+\frac{108097609}{625000000}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+\frac{10397}{25000}\right)^{2}}=\sqrt{\frac{108097609}{625000000}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+\frac{10397}{25000}=\frac{10397}{25000} x+\frac{10397}{25000}=-\frac{10397}{25000}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=0 x=-\frac{10397}{12500}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{10397}{25000} ಕಳೆಯಿರಿ.
x=-\frac{10397}{12500}
x ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮಾನಾಗಿರಬಾರದು.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}