ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

-x^{2}=18\times 10^{-5}x
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮನಾಗಿರಬಾರದು. x ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
-x^{2}=18\times \frac{1}{100000}x
-5 ನ ಘಾತಕ್ಕೆ 10 ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು \frac{1}{100000} ಪಡೆಯಿರಿ.
-x^{2}=\frac{9}{50000}x
\frac{9}{50000} ಪಡೆದುಕೊಳ್ಳಲು 18 ಮತ್ತು \frac{1}{100000} ಗುಣಿಸಿ.
-x^{2}-\frac{9}{50000}x=0
ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{9}{50000}x ಕಳೆಯಿರಿ.
x\left(-x-\frac{9}{50000}\right)=0
x ಅಪವರ್ತನಗೊಳಿಸಿ.
x=0 x=-\frac{9}{50000}
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, x=0 ಮತ್ತು -x-\frac{9}{50000}=0 ಪರಿಹರಿಸಿ.
x=-\frac{9}{50000}
x ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮಾನಾಗಿರಬಾರದು.
-x^{2}=18\times 10^{-5}x
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮನಾಗಿರಬಾರದು. x ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
-x^{2}=18\times \frac{1}{100000}x
-5 ನ ಘಾತಕ್ಕೆ 10 ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು \frac{1}{100000} ಪಡೆಯಿರಿ.
-x^{2}=\frac{9}{50000}x
\frac{9}{50000} ಪಡೆದುಕೊಳ್ಳಲು 18 ಮತ್ತು \frac{1}{100000} ಗುಣಿಸಿ.
-x^{2}-\frac{9}{50000}x=0
ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{9}{50000}x ಕಳೆಯಿರಿ.
x=\frac{-\left(-\frac{9}{50000}\right)±\sqrt{\left(-\frac{9}{50000}\right)^{2}}}{2\left(-1\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -1, b ಗೆ -\frac{9}{50000} ಮತ್ತು c ಗೆ 0 ಬದಲಿಸಿ.
x=\frac{-\left(-\frac{9}{50000}\right)±\frac{9}{50000}}{2\left(-1\right)}
\left(-\frac{9}{50000}\right)^{2} ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{\frac{9}{50000}±\frac{9}{50000}}{2\left(-1\right)}
-\frac{9}{50000} ನ ವಿಲೋಮವು \frac{9}{50000} ಆಗಿದೆ.
x=\frac{\frac{9}{50000}±\frac{9}{50000}}{-2}
-1 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{\frac{9}{25000}}{-2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{\frac{9}{50000}±\frac{9}{50000}}{-2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{9}{50000} ಗೆ \frac{9}{50000} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
x=-\frac{9}{50000}
-2 ದಿಂದ \frac{9}{25000} ಭಾಗಿಸಿ.
x=\frac{0}{-2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{\frac{9}{50000}±\frac{9}{50000}}{-2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. ಸಾಮಾನ್ಯ ಛೇದ ಮತ್ತು ಅಂಶಗಳನ್ನು ಕಳೆಯುವಿಕೆಯನ್ನು ಹುಡುಕುವ ಮೂಲಕ \frac{9}{50000} ದಿಂದ \frac{9}{50000} ಕಳೆಯಿರಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
x=0
-2 ದಿಂದ 0 ಭಾಗಿಸಿ.
x=-\frac{9}{50000} x=0
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
x=-\frac{9}{50000}
x ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮಾನಾಗಿರಬಾರದು.
-x^{2}=18\times 10^{-5}x
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮನಾಗಿರಬಾರದು. x ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
-x^{2}=18\times \frac{1}{100000}x
-5 ನ ಘಾತಕ್ಕೆ 10 ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು \frac{1}{100000} ಪಡೆಯಿರಿ.
-x^{2}=\frac{9}{50000}x
\frac{9}{50000} ಪಡೆದುಕೊಳ್ಳಲು 18 ಮತ್ತು \frac{1}{100000} ಗುಣಿಸಿ.
-x^{2}-\frac{9}{50000}x=0
ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{9}{50000}x ಕಳೆಯಿರಿ.
\frac{-x^{2}-\frac{9}{50000}x}{-1}=\frac{0}{-1}
-1 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\left(-\frac{\frac{9}{50000}}{-1}\right)x=\frac{0}{-1}
-1 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -1 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}+\frac{9}{50000}x=\frac{0}{-1}
-1 ದಿಂದ -\frac{9}{50000} ಭಾಗಿಸಿ.
x^{2}+\frac{9}{50000}x=0
-1 ದಿಂದ 0 ಭಾಗಿಸಿ.
x^{2}+\frac{9}{50000}x+\left(\frac{9}{100000}\right)^{2}=\left(\frac{9}{100000}\right)^{2}
\frac{9}{100000} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ \frac{9}{50000} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ \frac{9}{100000} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+\frac{9}{50000}x+\frac{81}{10000000000}=\frac{81}{10000000000}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ \frac{9}{100000} ವರ್ಗಗೊಳಿಸಿ.
\left(x+\frac{9}{100000}\right)^{2}=\frac{81}{10000000000}
ಅಪವರ್ತನ x^{2}+\frac{9}{50000}x+\frac{81}{10000000000}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+\frac{9}{100000}\right)^{2}}=\sqrt{\frac{81}{10000000000}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+\frac{9}{100000}=\frac{9}{100000} x+\frac{9}{100000}=-\frac{9}{100000}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=0 x=-\frac{9}{50000}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{9}{100000} ಕಳೆಯಿರಿ.
x=-\frac{9}{50000}
x ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮಾನಾಗಿರಬಾರದು.