ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಮೌಲ್ಯಮಾಪನ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

\frac{\left(\sqrt{14}+2\right)\left(1+\sqrt{7}\right)}{\left(1-\sqrt{7}\right)\left(1+\sqrt{7}\right)}
\frac{\sqrt{14}+2}{1-\sqrt{7}} ಅನ್ನು ಗುಣಿಸುವ ಮೂಲಕ ಛೇದವನ್ನು ಮತ್ತು 1+\sqrt{7} ಮೂಲಕ ಛೇದ ಮತ್ತು ಅಂಶವನ್ನು ತರ್ಕಬದ್ಧವಾಗಿಸಿ.
\frac{\left(\sqrt{14}+2\right)\left(1+\sqrt{7}\right)}{1^{2}-\left(\sqrt{7}\right)^{2}}
\left(1-\sqrt{7}\right)\left(1+\sqrt{7}\right) ಪರಿಗಣಿಸಿ. ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{14}+2\right)\left(1+\sqrt{7}\right)}{1-7}
ವರ್ಗ 1. ವರ್ಗ \sqrt{7}.
\frac{\left(\sqrt{14}+2\right)\left(1+\sqrt{7}\right)}{-6}
-6 ಪಡೆದುಕೊಳ್ಳಲು 1 ದಿಂದ 7 ಕಳೆಯಿರಿ.
\frac{\sqrt{14}+\sqrt{14}\sqrt{7}+2+2\sqrt{7}}{-6}
\sqrt{14}+2 ನ ಪ್ರತಿ ಪದವನ್ನು 1+\sqrt{7} ನ ಪ್ರತಿ ಪದದೊಂದಿಗೆ ಗುಣಾಕಾರ ಮಾಡುವ ಮೂಲಕ ವಿಭಾಜಕ ಗುಣವನ್ನು ಅನ್ವಯಿಸಿ.
\frac{\sqrt{14}+\sqrt{7}\sqrt{2}\sqrt{7}+2+2\sqrt{7}}{-6}
ಅಪವರ್ತನ 14=7\times 2. ವರ್ಗಮೂಲಗಳ \sqrt{7}\sqrt{2} ಉತ್ಪನ್ನವಾಗಿ \sqrt{7\times 2} ಉತ್ಪನ್ನದ ವರ್ಗಮೂಲವನ್ನು ಪುನಃ ಬರೆಯಿರಿ.
\frac{\sqrt{14}+7\sqrt{2}+2+2\sqrt{7}}{-6}
7 ಪಡೆದುಕೊಳ್ಳಲು \sqrt{7} ಮತ್ತು \sqrt{7} ಗುಣಿಸಿ.
\frac{-\sqrt{14}-7\sqrt{2}-2-2\sqrt{7}}{6}
ಅಂಶ ಮತ್ತು ಛೇದಗಳೆರಡನ್ನೂ -1 ರಿಂದ ಗುಣಿಸಿ.