x ಪರಿಹರಿಸಿ
x = \frac{20}{3} = 6\frac{2}{3} \approx 6.666666667
x = -\frac{20}{3} = -6\frac{2}{3} \approx -6.666666667
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
\frac{11}{8}\left(\frac{3}{11}+\frac{1}{6}+\frac{3}{2}\right)=\frac{3}{50}xx
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮನಾಗಿರಬಾರದು. x ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
\frac{11}{8}\left(\frac{18}{66}+\frac{11}{66}+\frac{3}{2}\right)=\frac{3}{50}xx
11 ಮತ್ತು 6 ಇವುಗಳ ಕನಿಷ್ಠ ಅಪವರ್ತ್ಯವು 66 ಆಗಿದೆ. 66 ಛೇದದ ಮೂಲಕ \frac{3}{11} ಮತ್ತು \frac{1}{6} ಅನ್ನು ಭಿನ್ನಾಂಕಗಳಿಗೆ ಪರಿವರ್ತಿಸಿ.
\frac{11}{8}\left(\frac{18+11}{66}+\frac{3}{2}\right)=\frac{3}{50}xx
\frac{18}{66} ಮತ್ತು \frac{11}{66} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಸೇರಿಸಿ.
\frac{11}{8}\left(\frac{29}{66}+\frac{3}{2}\right)=\frac{3}{50}xx
29 ಪಡೆದುಕೊಳ್ಳಲು 18 ಮತ್ತು 11 ಸೇರಿಸಿ.
\frac{11}{8}\left(\frac{29}{66}+\frac{99}{66}\right)=\frac{3}{50}xx
66 ಮತ್ತು 2 ಇವುಗಳ ಕನಿಷ್ಠ ಅಪವರ್ತ್ಯವು 66 ಆಗಿದೆ. 66 ಛೇದದ ಮೂಲಕ \frac{29}{66} ಮತ್ತು \frac{3}{2} ಅನ್ನು ಭಿನ್ನಾಂಕಗಳಿಗೆ ಪರಿವರ್ತಿಸಿ.
\frac{11}{8}\times \frac{29+99}{66}=\frac{3}{50}xx
\frac{29}{66} ಮತ್ತು \frac{99}{66} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಸೇರಿಸಿ.
\frac{11}{8}\times \frac{128}{66}=\frac{3}{50}xx
128 ಪಡೆದುಕೊಳ್ಳಲು 29 ಮತ್ತು 99 ಸೇರಿಸಿ.
\frac{11}{8}\times \frac{64}{33}=\frac{3}{50}xx
2 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{128}{66} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
\frac{11\times 64}{8\times 33}=\frac{3}{50}xx
ಸಂಖ್ಯಾಕಾರ ಸಮಯ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದ ಸಮಯ ಛೇದವನ್ನು ಗುಣಿಸುವ ಮೂಲಕ \frac{64}{33} ಅನ್ನು \frac{11}{8} ಬಾರಿ ಗುಣಿಸಿ.
\frac{704}{264}=\frac{3}{50}xx
\frac{11\times 64}{8\times 33} ಭಿನ್ನಾಂಶದಲ್ಲಿ ಗುಣಾಕಾರ ಮಾಡಿ.
\frac{8}{3}=\frac{3}{50}xx
88 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{704}{264} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
\frac{8}{3}=\frac{3}{50}x^{2}
x^{2} ಪಡೆದುಕೊಳ್ಳಲು x ಮತ್ತು x ಗುಣಿಸಿ.
\frac{3}{50}x^{2}=\frac{8}{3}
ಎಲ್ಲಾ ವೇರಿಯೇಬಲ್ ಪದಗಳು ಎಡಬದಿಯಲ್ಲಿರುವಂತೆ ಬದಿಗಳನ್ನು ಬದಲಿಕೆ ಮಾಡಿ.
x^{2}=\frac{8}{3}\times \frac{50}{3}
ಎರಡೂ ಭಾಗಗಳನ್ನು \frac{3}{50} ರ ವ್ಯುತ್ಕ್ರಮವಾದ \frac{50}{3} ರಿಂದ ಗುಣಿಸಿ.
x^{2}=\frac{8\times 50}{3\times 3}
ಸಂಖ್ಯಾಕಾರ ಸಮಯ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದ ಸಮಯ ಛೇದವನ್ನು ಗುಣಿಸುವ ಮೂಲಕ \frac{50}{3} ಅನ್ನು \frac{8}{3} ಬಾರಿ ಗುಣಿಸಿ.
x^{2}=\frac{400}{9}
\frac{8\times 50}{3\times 3} ಭಿನ್ನಾಂಶದಲ್ಲಿ ಗುಣಾಕಾರ ಮಾಡಿ.
x=\frac{20}{3} x=-\frac{20}{3}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
\frac{11}{8}\left(\frac{3}{11}+\frac{1}{6}+\frac{3}{2}\right)=\frac{3}{50}xx
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮನಾಗಿರಬಾರದು. x ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
\frac{11}{8}\left(\frac{18}{66}+\frac{11}{66}+\frac{3}{2}\right)=\frac{3}{50}xx
11 ಮತ್ತು 6 ಇವುಗಳ ಕನಿಷ್ಠ ಅಪವರ್ತ್ಯವು 66 ಆಗಿದೆ. 66 ಛೇದದ ಮೂಲಕ \frac{3}{11} ಮತ್ತು \frac{1}{6} ಅನ್ನು ಭಿನ್ನಾಂಕಗಳಿಗೆ ಪರಿವರ್ತಿಸಿ.
\frac{11}{8}\left(\frac{18+11}{66}+\frac{3}{2}\right)=\frac{3}{50}xx
\frac{18}{66} ಮತ್ತು \frac{11}{66} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಸೇರಿಸಿ.
\frac{11}{8}\left(\frac{29}{66}+\frac{3}{2}\right)=\frac{3}{50}xx
29 ಪಡೆದುಕೊಳ್ಳಲು 18 ಮತ್ತು 11 ಸೇರಿಸಿ.
\frac{11}{8}\left(\frac{29}{66}+\frac{99}{66}\right)=\frac{3}{50}xx
66 ಮತ್ತು 2 ಇವುಗಳ ಕನಿಷ್ಠ ಅಪವರ್ತ್ಯವು 66 ಆಗಿದೆ. 66 ಛೇದದ ಮೂಲಕ \frac{29}{66} ಮತ್ತು \frac{3}{2} ಅನ್ನು ಭಿನ್ನಾಂಕಗಳಿಗೆ ಪರಿವರ್ತಿಸಿ.
\frac{11}{8}\times \frac{29+99}{66}=\frac{3}{50}xx
\frac{29}{66} ಮತ್ತು \frac{99}{66} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಸೇರಿಸಿ.
\frac{11}{8}\times \frac{128}{66}=\frac{3}{50}xx
128 ಪಡೆದುಕೊಳ್ಳಲು 29 ಮತ್ತು 99 ಸೇರಿಸಿ.
\frac{11}{8}\times \frac{64}{33}=\frac{3}{50}xx
2 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{128}{66} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
\frac{11\times 64}{8\times 33}=\frac{3}{50}xx
ಸಂಖ್ಯಾಕಾರ ಸಮಯ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದ ಸಮಯ ಛೇದವನ್ನು ಗುಣಿಸುವ ಮೂಲಕ \frac{64}{33} ಅನ್ನು \frac{11}{8} ಬಾರಿ ಗುಣಿಸಿ.
\frac{704}{264}=\frac{3}{50}xx
\frac{11\times 64}{8\times 33} ಭಿನ್ನಾಂಶದಲ್ಲಿ ಗುಣಾಕಾರ ಮಾಡಿ.
\frac{8}{3}=\frac{3}{50}xx
88 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{704}{264} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
\frac{8}{3}=\frac{3}{50}x^{2}
x^{2} ಪಡೆದುಕೊಳ್ಳಲು x ಮತ್ತು x ಗುಣಿಸಿ.
\frac{3}{50}x^{2}=\frac{8}{3}
ಎಲ್ಲಾ ವೇರಿಯೇಬಲ್ ಪದಗಳು ಎಡಬದಿಯಲ್ಲಿರುವಂತೆ ಬದಿಗಳನ್ನು ಬದಲಿಕೆ ಮಾಡಿ.
\frac{3}{50}x^{2}-\frac{8}{3}=0
ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{8}{3} ಕಳೆಯಿರಿ.
x=\frac{0±\sqrt{0^{2}-4\times \frac{3}{50}\left(-\frac{8}{3}\right)}}{2\times \frac{3}{50}}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ \frac{3}{50}, b ಗೆ 0 ಮತ್ತು c ಗೆ -\frac{8}{3} ಬದಲಿಸಿ.
x=\frac{0±\sqrt{-4\times \frac{3}{50}\left(-\frac{8}{3}\right)}}{2\times \frac{3}{50}}
ವರ್ಗ 0.
x=\frac{0±\sqrt{-\frac{6}{25}\left(-\frac{8}{3}\right)}}{2\times \frac{3}{50}}
\frac{3}{50} ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{0±\sqrt{\frac{16}{25}}}{2\times \frac{3}{50}}
ಸಂಖ್ಯಾಕಾರ ಸಮಯ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದ ಸಮಯ ಛೇದವನ್ನು ಗುಣಿಸುವ ಮೂಲಕ -\frac{8}{3} ಅನ್ನು -\frac{6}{25} ಬಾರಿ ಗುಣಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
x=\frac{0±\frac{4}{5}}{2\times \frac{3}{50}}
\frac{16}{25} ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{0±\frac{4}{5}}{\frac{3}{25}}
\frac{3}{50} ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{20}{3}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{0±\frac{4}{5}}{\frac{3}{25}} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ.
x=-\frac{20}{3}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{0±\frac{4}{5}}{\frac{3}{25}} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ.
x=\frac{20}{3} x=-\frac{20}{3}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}