ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಮೌಲ್ಯಮಾಪನ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

\frac{\frac{1}{2}\times 4\sqrt{3}}{3\sqrt{2}-\sqrt{3}}
ಅಪವರ್ತನ 48=4^{2}\times 3. ವರ್ಗಮೂಲಗಳ \sqrt{4^{2}}\sqrt{3} ಉತ್ಪನ್ನವಾಗಿ \sqrt{4^{2}\times 3} ಉತ್ಪನ್ನದ ವರ್ಗಮೂಲವನ್ನು ಪುನಃ ಬರೆಯಿರಿ. 4^{2} ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
\frac{\frac{4}{2}\sqrt{3}}{3\sqrt{2}-\sqrt{3}}
\frac{4}{2} ಪಡೆದುಕೊಳ್ಳಲು \frac{1}{2} ಮತ್ತು 4 ಗುಣಿಸಿ.
\frac{2\sqrt{3}}{3\sqrt{2}-\sqrt{3}}
2 ಪಡೆಯಲು 2 ರಿಂದ 4 ವಿಭಾಗಿಸಿ.
\frac{2\sqrt{3}\left(3\sqrt{2}+\sqrt{3}\right)}{\left(3\sqrt{2}-\sqrt{3}\right)\left(3\sqrt{2}+\sqrt{3}\right)}
\frac{2\sqrt{3}}{3\sqrt{2}-\sqrt{3}} ಅನ್ನು ಗುಣಿಸುವ ಮೂಲಕ ಛೇದವನ್ನು ಮತ್ತು 3\sqrt{2}+\sqrt{3} ಮೂಲಕ ಛೇದ ಮತ್ತು ಅಂಶವನ್ನು ತರ್ಕಬದ್ಧವಾಗಿಸಿ.
\frac{2\sqrt{3}\left(3\sqrt{2}+\sqrt{3}\right)}{\left(3\sqrt{2}\right)^{2}-\left(\sqrt{3}\right)^{2}}
\left(3\sqrt{2}-\sqrt{3}\right)\left(3\sqrt{2}+\sqrt{3}\right) ಪರಿಗಣಿಸಿ. ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\sqrt{3}\left(3\sqrt{2}+\sqrt{3}\right)}{3^{2}\left(\sqrt{2}\right)^{2}-\left(\sqrt{3}\right)^{2}}
\left(3\sqrt{2}\right)^{2} ವಿಸ್ತರಿಸಿ.
\frac{2\sqrt{3}\left(3\sqrt{2}+\sqrt{3}\right)}{9\left(\sqrt{2}\right)^{2}-\left(\sqrt{3}\right)^{2}}
2 ನ ಘಾತಕ್ಕೆ 3 ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 9 ಪಡೆಯಿರಿ.
\frac{2\sqrt{3}\left(3\sqrt{2}+\sqrt{3}\right)}{9\times 2-\left(\sqrt{3}\right)^{2}}
\sqrt{2} ವರ್ಗವು 2 ಆಗಿದೆ.
\frac{2\sqrt{3}\left(3\sqrt{2}+\sqrt{3}\right)}{18-\left(\sqrt{3}\right)^{2}}
18 ಪಡೆದುಕೊಳ್ಳಲು 9 ಮತ್ತು 2 ಗುಣಿಸಿ.
\frac{2\sqrt{3}\left(3\sqrt{2}+\sqrt{3}\right)}{18-3}
\sqrt{3} ವರ್ಗವು 3 ಆಗಿದೆ.
\frac{2\sqrt{3}\left(3\sqrt{2}+\sqrt{3}\right)}{15}
15 ಪಡೆದುಕೊಳ್ಳಲು 18 ದಿಂದ 3 ಕಳೆಯಿರಿ.
\frac{6\sqrt{3}\sqrt{2}+2\left(\sqrt{3}\right)^{2}}{15}
3\sqrt{2}+\sqrt{3} ದಿಂದ 2\sqrt{3} ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
\frac{6\sqrt{6}+2\left(\sqrt{3}\right)^{2}}{15}
\sqrt{3} ಮತ್ತು \sqrt{2} ಅನ್ನು ಗುಣಿಸಲು, ವರ್ಗಮೂಲದ ಅಡಿಯಲ್ಲಿರುವ ಸಂಖ್ಯೆಯನ್ನು ಗುಣಿಸಿ.
\frac{6\sqrt{6}+2\times 3}{15}
\sqrt{3} ವರ್ಗವು 3 ಆಗಿದೆ.
\frac{6\sqrt{6}+6}{15}
6 ಪಡೆದುಕೊಳ್ಳಲು 2 ಮತ್ತು 3 ಗುಣಿಸಿ.