ಮೌಲ್ಯಮಾಪನ
\frac{\sqrt{2}+\sqrt{6}-2\sqrt{3}-1}{5}\approx -0.120079662
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
\frac{\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}-1}{\frac{1}{\sqrt{2}}+\sqrt{3}}
\frac{1}{\sqrt{2}} ಅನ್ನು ಗುಣಿಸುವ ಮೂಲಕ ಛೇದವನ್ನು ಮತ್ತು \sqrt{2} ಮೂಲಕ ಛೇದ ಮತ್ತು ಅಂಶವನ್ನು ತರ್ಕಬದ್ಧವಾಗಿಸಿ.
\frac{\frac{\sqrt{2}}{2}-1}{\frac{1}{\sqrt{2}}+\sqrt{3}}
\sqrt{2} ವರ್ಗವು 2 ಆಗಿದೆ.
\frac{\frac{\sqrt{2}}{2}-\frac{2}{2}}{\frac{1}{\sqrt{2}}+\sqrt{3}}
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. \frac{2}{2} ಅನ್ನು 1 ಬಾರಿ ಗುಣಿಸಿ.
\frac{\frac{\sqrt{2}-2}{2}}{\frac{1}{\sqrt{2}}+\sqrt{3}}
\frac{\sqrt{2}}{2} ಮತ್ತು \frac{2}{2} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಕಳೆಯಿರಿ.
\frac{\frac{\sqrt{2}-2}{2}}{\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}+\sqrt{3}}
\frac{1}{\sqrt{2}} ಅನ್ನು ಗುಣಿಸುವ ಮೂಲಕ ಛೇದವನ್ನು ಮತ್ತು \sqrt{2} ಮೂಲಕ ಛೇದ ಮತ್ತು ಅಂಶವನ್ನು ತರ್ಕಬದ್ಧವಾಗಿಸಿ.
\frac{\frac{\sqrt{2}-2}{2}}{\frac{\sqrt{2}}{2}+\sqrt{3}}
\sqrt{2} ವರ್ಗವು 2 ಆಗಿದೆ.
\frac{\frac{\sqrt{2}-2}{2}}{\frac{\sqrt{2}}{2}+\frac{2\sqrt{3}}{2}}
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. \frac{2}{2} ಅನ್ನು \sqrt{3} ಬಾರಿ ಗುಣಿಸಿ.
\frac{\frac{\sqrt{2}-2}{2}}{\frac{\sqrt{2}+2\sqrt{3}}{2}}
\frac{\sqrt{2}}{2} ಮತ್ತು \frac{2\sqrt{3}}{2} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಸೇರಿಸಿ.
\frac{\left(\sqrt{2}-2\right)\times 2}{2\left(\sqrt{2}+2\sqrt{3}\right)}
\frac{\sqrt{2}+2\sqrt{3}}{2} ನ ವ್ಯುತ್ಕ್ರಮದಿಂದ \frac{\sqrt{2}-2}{2} ಗುಣಿಸುವ ಮೂಲಕ \frac{\sqrt{2}+2\sqrt{3}}{2} ದಿಂದ \frac{\sqrt{2}-2}{2} ಭಾಗಿಸಿ.
\frac{\sqrt{2}-2}{\sqrt{2}+2\sqrt{3}}
ಗಣಕ ಮತ್ತು ಛೇದ ಎರಡರಲ್ಲೂ 2 ರದ್ದುಗೊಳಿಸಿ.
\frac{\left(\sqrt{2}-2\right)\left(\sqrt{2}-2\sqrt{3}\right)}{\left(\sqrt{2}+2\sqrt{3}\right)\left(\sqrt{2}-2\sqrt{3}\right)}
\frac{\sqrt{2}-2}{\sqrt{2}+2\sqrt{3}} ಅನ್ನು ಗುಣಿಸುವ ಮೂಲಕ ಛೇದವನ್ನು ಮತ್ತು \sqrt{2}-2\sqrt{3} ಮೂಲಕ ಛೇದ ಮತ್ತು ಅಂಶವನ್ನು ತರ್ಕಬದ್ಧವಾಗಿಸಿ.
\frac{\left(\sqrt{2}-2\right)\left(\sqrt{2}-2\sqrt{3}\right)}{\left(\sqrt{2}\right)^{2}-\left(2\sqrt{3}\right)^{2}}
\left(\sqrt{2}+2\sqrt{3}\right)\left(\sqrt{2}-2\sqrt{3}\right) ಪರಿಗಣಿಸಿ. ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{2}-2\right)\left(\sqrt{2}-2\sqrt{3}\right)}{2-\left(2\sqrt{3}\right)^{2}}
\sqrt{2} ವರ್ಗವು 2 ಆಗಿದೆ.
\frac{\left(\sqrt{2}-2\right)\left(\sqrt{2}-2\sqrt{3}\right)}{2-2^{2}\left(\sqrt{3}\right)^{2}}
\left(2\sqrt{3}\right)^{2} ವಿಸ್ತರಿಸಿ.
\frac{\left(\sqrt{2}-2\right)\left(\sqrt{2}-2\sqrt{3}\right)}{2-4\left(\sqrt{3}\right)^{2}}
2 ನ ಘಾತಕ್ಕೆ 2 ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 4 ಪಡೆಯಿರಿ.
\frac{\left(\sqrt{2}-2\right)\left(\sqrt{2}-2\sqrt{3}\right)}{2-4\times 3}
\sqrt{3} ವರ್ಗವು 3 ಆಗಿದೆ.
\frac{\left(\sqrt{2}-2\right)\left(\sqrt{2}-2\sqrt{3}\right)}{2-12}
12 ಪಡೆದುಕೊಳ್ಳಲು 4 ಮತ್ತು 3 ಗುಣಿಸಿ.
\frac{\left(\sqrt{2}-2\right)\left(\sqrt{2}-2\sqrt{3}\right)}{-10}
-10 ಪಡೆದುಕೊಳ್ಳಲು 2 ದಿಂದ 12 ಕಳೆಯಿರಿ.
\frac{\left(\sqrt{2}\right)^{2}-2\sqrt{2}\sqrt{3}-2\sqrt{2}+4\sqrt{3}}{-10}
\sqrt{2}-2 ನ ಪ್ರತಿ ಪದವನ್ನು \sqrt{2}-2\sqrt{3} ನ ಪ್ರತಿ ಪದದೊಂದಿಗೆ ಗುಣಾಕಾರ ಮಾಡುವ ಮೂಲಕ ವಿಭಾಜಕ ಗುಣವನ್ನು ಅನ್ವಯಿಸಿ.
\frac{2-2\sqrt{2}\sqrt{3}-2\sqrt{2}+4\sqrt{3}}{-10}
\sqrt{2} ವರ್ಗವು 2 ಆಗಿದೆ.
\frac{2-2\sqrt{6}-2\sqrt{2}+4\sqrt{3}}{-10}
\sqrt{2} ಮತ್ತು \sqrt{3} ಅನ್ನು ಗುಣಿಸಲು, ವರ್ಗಮೂಲದ ಅಡಿಯಲ್ಲಿರುವ ಸಂಖ್ಯೆಯನ್ನು ಗುಣಿಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}