y ಪರಿಹರಿಸಿ
y=5
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
y^{2}+17=\left(y-1\right)\left(y-2\right)-\left(-\left(1+y\right)\times 5\right)
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ y ವೇರಿಯೇಬಲ್ ಯಾವುದೇ -1,1 ಮೌಲ್ಯಗಳಿಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು \left(y-1\right)\left(y+1\right), y^{2}-1,y+1,1-y ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
y^{2}+17=y^{2}-3y+2-\left(-\left(1+y\right)\times 5\right)
y-2 ರಿಂದು y-1 ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
y^{2}+17=y^{2}-3y+2-\left(-5\left(1+y\right)\right)
-5 ಪಡೆದುಕೊಳ್ಳಲು -1 ಮತ್ತು 5 ಗುಣಿಸಿ.
y^{2}+17=y^{2}-3y+2-\left(-5-5y\right)
1+y ದಿಂದ -5 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
y^{2}+17=y^{2}-3y+2+5+5y
-5-5y ವಿರುದ್ಧವನ್ನು ಹುಡುಕಲು, ಪ್ರತಿ ಪದದ ವಿರುದ್ಧ ಪದವನ್ನು ಹುಡುಕಿ.
y^{2}+17=y^{2}-3y+7+5y
7 ಪಡೆದುಕೊಳ್ಳಲು 2 ಮತ್ತು 5 ಸೇರಿಸಿ.
y^{2}+17=y^{2}+2y+7
2y ಪಡೆದುಕೊಳ್ಳಲು -3y ಮತ್ತು 5y ಕೂಡಿಸಿ.
y^{2}+17-y^{2}=2y+7
ಎರಡೂ ಕಡೆಗಳಿಂದ y^{2} ಕಳೆಯಿರಿ.
17=2y+7
0 ಪಡೆದುಕೊಳ್ಳಲು y^{2} ಮತ್ತು -y^{2} ಕೂಡಿಸಿ.
2y+7=17
ಎಲ್ಲಾ ವೇರಿಯೇಬಲ್ ಪದಗಳು ಎಡಬದಿಯಲ್ಲಿರುವಂತೆ ಬದಿಗಳನ್ನು ಬದಲಿಕೆ ಮಾಡಿ.
2y=17-7
ಎರಡೂ ಕಡೆಗಳಿಂದ 7 ಕಳೆಯಿರಿ.
2y=10
10 ಪಡೆದುಕೊಳ್ಳಲು 17 ದಿಂದ 7 ಕಳೆಯಿರಿ.
y=\frac{10}{2}
2 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
y=5
5 ಪಡೆಯಲು 2 ರಿಂದ 10 ವಿಭಾಗಿಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}