ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

4x\left(x-1\right)-3x\left(x+1\right)+3x+4=0
ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು 12, 3,4,12 ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
4x^{2}-4x-3x\left(x+1\right)+3x+4=0
x-1 ದಿಂದ 4x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
4x^{2}-4x-3x^{2}-3x+3x+4=0
x+1 ದಿಂದ -3x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
x^{2}-4x-3x+3x+4=0
x^{2} ಪಡೆದುಕೊಳ್ಳಲು 4x^{2} ಮತ್ತು -3x^{2} ಕೂಡಿಸಿ.
x^{2}-7x+3x+4=0
-7x ಪಡೆದುಕೊಳ್ಳಲು -4x ಮತ್ತು -3x ಕೂಡಿಸಿ.
x^{2}-4x+4=0
-4x ಪಡೆದುಕೊಳ್ಳಲು -7x ಮತ್ತು 3x ಕೂಡಿಸಿ.
a+b=-4 ab=4
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) ಸೂತ್ರವನ್ನು ಬಳಸಿಕೊಂಡು x^{2}-4x+4 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
-1,-4 -2,-2
ab ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಒಂದೇ ಚಿಹ್ನೆಯನ್ನು ಹೊಂದಿವೆ. a+b ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಎರಡೂ ಋಣಾತ್ಮಕವಾಗಿವೆ. ಉತ್ಪನ್ನ 4 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
-1-4=-5 -2-2=-4
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=-2 b=-2
ಪರಿಹಾರವು -4 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(x-2\right)\left(x-2\right)
ಪಡೆದುಕೊಂಡ ಮೌಲ್ಯಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಅಪವರ್ತನಗೊಳಿಸಿದ ಅಭಿವ್ಯಕ್ತಿ \left(x+a\right)\left(x+b\right) ಅನ್ನು ಮರುಬರೆಯಿರಿ.
\left(x-2\right)^{2}
ದ್ವಿಪದದ ವರ್ಗವಾಗಿ ಮರುಬರೆಯಿರಿ.
x=2
ಸಮೀಕರಣ ಪರಿಹಾರ ಹುಡುಕಲು, x-2=0 ಪರಿಹರಿಸಿ.
4x\left(x-1\right)-3x\left(x+1\right)+3x+4=0
ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು 12, 3,4,12 ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
4x^{2}-4x-3x\left(x+1\right)+3x+4=0
x-1 ದಿಂದ 4x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
4x^{2}-4x-3x^{2}-3x+3x+4=0
x+1 ದಿಂದ -3x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
x^{2}-4x-3x+3x+4=0
x^{2} ಪಡೆದುಕೊಳ್ಳಲು 4x^{2} ಮತ್ತು -3x^{2} ಕೂಡಿಸಿ.
x^{2}-7x+3x+4=0
-7x ಪಡೆದುಕೊಳ್ಳಲು -4x ಮತ್ತು -3x ಕೂಡಿಸಿ.
x^{2}-4x+4=0
-4x ಪಡೆದುಕೊಳ್ಳಲು -7x ಮತ್ತು 3x ಕೂಡಿಸಿ.
a+b=-4 ab=1\times 4=4
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು, ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಎಡಭಾಗದಲ್ಲಿ ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಎಡಭಾಗವನ್ನು x^{2}+ax+bx+4 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
-1,-4 -2,-2
ab ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಒಂದೇ ಚಿಹ್ನೆಯನ್ನು ಹೊಂದಿವೆ. a+b ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಎರಡೂ ಋಣಾತ್ಮಕವಾಗಿವೆ. ಉತ್ಪನ್ನ 4 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
-1-4=-5 -2-2=-4
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=-2 b=-2
ಪರಿಹಾರವು -4 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(x^{2}-2x\right)+\left(-2x+4\right)
\left(x^{2}-2x\right)+\left(-2x+4\right) ನ ಹಾಗೆ x^{2}-4x+4 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
x\left(x-2\right)-2\left(x-2\right)
ಮೊದಲನೆಯದರಲ್ಲಿ x ಅನ್ನು ಮತ್ತು ಎರಡನೆಯ ಗುಂಪಿನಲ್ಲಿ -2 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(x-2\right)\left(x-2\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ x-2 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(x-2\right)^{2}
ದ್ವಿಪದದ ವರ್ಗವಾಗಿ ಮರುಬರೆಯಿರಿ.
x=2
ಸಮೀಕರಣ ಪರಿಹಾರ ಹುಡುಕಲು, x-2=0 ಪರಿಹರಿಸಿ.
4x\left(x-1\right)-3x\left(x+1\right)+3x+4=0
ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು 12, 3,4,12 ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
4x^{2}-4x-3x\left(x+1\right)+3x+4=0
x-1 ದಿಂದ 4x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
4x^{2}-4x-3x^{2}-3x+3x+4=0
x+1 ದಿಂದ -3x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
x^{2}-4x-3x+3x+4=0
x^{2} ಪಡೆದುಕೊಳ್ಳಲು 4x^{2} ಮತ್ತು -3x^{2} ಕೂಡಿಸಿ.
x^{2}-7x+3x+4=0
-7x ಪಡೆದುಕೊಳ್ಳಲು -4x ಮತ್ತು -3x ಕೂಡಿಸಿ.
x^{2}-4x+4=0
-4x ಪಡೆದುಕೊಳ್ಳಲು -7x ಮತ್ತು 3x ಕೂಡಿಸಿ.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 4}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ -4 ಮತ್ತು c ಗೆ 4 ಬದಲಿಸಿ.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 4}}{2}
ವರ್ಗ -4.
x=\frac{-\left(-4\right)±\sqrt{16-16}}{2}
4 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-4\right)±\sqrt{0}}{2}
-16 ಗೆ 16 ಸೇರಿಸಿ.
x=-\frac{-4}{2}
0 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{4}{2}
-4 ನ ವಿಲೋಮವು 4 ಆಗಿದೆ.
x=2
2 ದಿಂದ 4 ಭಾಗಿಸಿ.
4x\left(x-1\right)-3x\left(x+1\right)+3x+4=0
ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು 12, 3,4,12 ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
4x^{2}-4x-3x\left(x+1\right)+3x+4=0
x-1 ದಿಂದ 4x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
4x^{2}-4x-3x^{2}-3x+3x+4=0
x+1 ದಿಂದ -3x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
x^{2}-4x-3x+3x+4=0
x^{2} ಪಡೆದುಕೊಳ್ಳಲು 4x^{2} ಮತ್ತು -3x^{2} ಕೂಡಿಸಿ.
x^{2}-7x+3x+4=0
-7x ಪಡೆದುಕೊಳ್ಳಲು -4x ಮತ್ತು -3x ಕೂಡಿಸಿ.
x^{2}-4x+4=0
-4x ಪಡೆದುಕೊಳ್ಳಲು -7x ಮತ್ತು 3x ಕೂಡಿಸಿ.
\left(x-2\right)^{2}=0
ಅಪವರ್ತನ x^{2}-4x+4. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-2\right)^{2}}=\sqrt{0}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-2=0 x-2=0
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=2 x=2
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 2 ಸೇರಿಸಿ.
x=2
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ. ಪರಿಹಾರಗಳು ಒಂದೇ ಆಗಿವೆ.