ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಮೌಲ್ಯಮಾಪನ
Tick mark Image
ವ್ಯತ್ಯಾಸ w.r.t. x
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

\frac{x}{\frac{xx}{x}-\frac{1}{x}}
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. \frac{x}{x} ಅನ್ನು x ಬಾರಿ ಗುಣಿಸಿ.
\frac{x}{\frac{xx-1}{x}}
\frac{xx}{x} ಮತ್ತು \frac{1}{x} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಕಳೆಯಿರಿ.
\frac{x}{\frac{x^{2}-1}{x}}
xx-1 ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{xx}{x^{2}-1}
\frac{x^{2}-1}{x} ನ ವ್ಯುತ್ಕ್ರಮದಿಂದ x ಗುಣಿಸುವ ಮೂಲಕ \frac{x^{2}-1}{x} ದಿಂದ x ಭಾಗಿಸಿ.
\frac{x^{2}}{x^{2}-1}
x^{2} ಪಡೆದುಕೊಳ್ಳಲು x ಮತ್ತು x ಗುಣಿಸಿ.
\frac{\left(x^{1}-\frac{1}{x}\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1})-x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-\frac{1}{x})}{\left(x^{1}-\frac{1}{x}\right)^{2}}
ಯಾವುದೇ ಎರಡು ವ್ಯತ್ಯಾಸವಿಲ್ಲದ ಕಾರ್ಯಗಳಿಗೆ, ಎರಡು ಕಾರ್ಯಗಳ ಭಾಗಲಬ್ಧ ವ್ಯುತ್ಪನ್ನವು ಸಂಖ್ಯಾಕಾರ ವ್ಯುತ್ಪನ್ನದ ಛೇದದ ಸಮಯವನ್ನು ಛೇದದ ವ್ಯುತ್ಪನ್ನದ ಸಂಖ್ಯಾಕಾರ ಸಮಯದಲ್ಲಿ ವ್ಯವಕಲಿಸುತ್ತದೆ, ಎಲ್ಲವನ್ನು ವರ್ಗಮಾಡಲಾದ ಛೇದದಿಂದ ವಿಭಜಿಸಲಾಗಿದೆ.
\frac{\left(x^{1}-\frac{1}{x}\right)x^{1-1}-x^{1}\left(x^{1-1}-\left(-x^{-1-1}\right)\right)}{\left(x^{1}-\frac{1}{x}\right)^{2}}
ಬಹುಪದೀಯದ ವ್ಯುತ್ಪತ್ತಿಯು ಅದರ ಪದಗಳ ವ್ಯುತ್ಪತ್ತಿಗಳ ಮೊತ್ತವಾಗಿದೆ. ಯಾವುದೇ ಸ್ಥಿರ ಪದದ ವ್ಯುತ್ಪತ್ತಿಯು 0 ಆಗಿದೆ. ax^{n} ನ ವ್ಯುತ್ಪತ್ತಿಯು nax^{n-1} ಆಗಿದೆ.
\frac{\left(x^{1}-\frac{1}{x}\right)x^{0}-x^{1}\left(x^{0}+x^{-2}\right)}{\left(x^{1}-\frac{1}{x}\right)^{2}}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
\frac{x^{1}x^{0}-\frac{1}{x}x^{0}-x^{1}\left(x^{0}+x^{-2}\right)}{\left(x^{1}-\frac{1}{x}\right)^{2}}
x^{0} ಅನ್ನು x^{1}-\frac{1}{x} ಬಾರಿ ಗುಣಿಸಿ.
\frac{x^{1}x^{0}-\frac{1}{x}x^{0}-\left(x^{1}x^{0}+x^{1}x^{-2}\right)}{\left(x^{1}-\frac{1}{x}\right)^{2}}
x^{0}+x^{-2} ಅನ್ನು x^{1} ಬಾರಿ ಗುಣಿಸಿ.
\frac{x^{1}-\frac{1}{x}-\left(x^{1}+x^{1-2}\right)}{\left(x^{1}-\frac{1}{x}\right)^{2}}
ಒಂದೇ ಆಧಾರ ಸಂಖ್ಯೆಯ ಘಾತಗಳನ್ನು ಗುಣಿಸಲು ಅದರ ಘಾತಾಂಕಗಳನ್ನು ಸೇರಿಸಿ.
\frac{x^{1}-\frac{1}{x}-\left(x^{1}+\frac{1}{x}\right)}{\left(x^{1}-\frac{1}{x}\right)^{2}}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
\frac{-2\times \frac{1}{x}}{\left(x^{1}-\frac{1}{x}\right)^{2}}
ಪದಗಳಂತೆ ಕೂಡಿಸಿ.
\frac{-2\times \frac{1}{x}}{\left(x-\frac{1}{x}\right)^{2}}
ಯಾವುದೇ ಪದಕ್ಕೆ t, t^{1}=t.