ಮೌಲ್ಯಮಾಪನ
\frac{x-6}{\left(x+2\right)\left(x+6\right)}
ವ್ಯತ್ಯಾಸ w.r.t. x
\frac{60+12x-x^{2}}{x^{4}+16x^{3}+88x^{2}+192x+144}
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
\frac{x}{\left(x+4\right)\left(x+6\right)}-\frac{4}{\left(x+2\right)\left(x+4\right)}
ಅಪವರ್ತನ x^{2}+10x+24. ಅಪವರ್ತನ x^{2}+6x+8.
\frac{x\left(x+2\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)}-\frac{4\left(x+6\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)}
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. \left(x+4\right)\left(x+6\right) ಮತ್ತು \left(x+2\right)\left(x+4\right) ಇವುಗಳ ಕನಿಷ್ಠ ಅಪವರ್ತ್ಯವು \left(x+2\right)\left(x+4\right)\left(x+6\right) ಆಗಿದೆ. \frac{x+2}{x+2} ಅನ್ನು \frac{x}{\left(x+4\right)\left(x+6\right)} ಬಾರಿ ಗುಣಿಸಿ. \frac{x+6}{x+6} ಅನ್ನು \frac{4}{\left(x+2\right)\left(x+4\right)} ಬಾರಿ ಗುಣಿಸಿ.
\frac{x\left(x+2\right)-4\left(x+6\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)}
\frac{x\left(x+2\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)} ಮತ್ತು \frac{4\left(x+6\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಕಳೆಯಿರಿ.
\frac{x^{2}+2x-4x-24}{\left(x+2\right)\left(x+4\right)\left(x+6\right)}
x\left(x+2\right)-4\left(x+6\right) ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{x^{2}-2x-24}{\left(x+2\right)\left(x+4\right)\left(x+6\right)}
x^{2}+2x-4x-24 ನಲ್ಲಿ ಅಂಶಗಳಂತೆ ಕೂಡಿಸಿ.
\frac{\left(x-6\right)\left(x+4\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)}
ಈಗಾಗಲೇ \frac{x^{2}-2x-24}{\left(x+2\right)\left(x+4\right)\left(x+6\right)} ನಲ್ಲಿ ಅಪವರ್ತನಗೊಳಿಸದ ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\frac{x-6}{\left(x+2\right)\left(x+6\right)}
ಗಣಕ ಮತ್ತು ಛೇದ ಎರಡರಲ್ಲೂ x+4 ರದ್ದುಗೊಳಿಸಿ.
\frac{x-6}{x^{2}+8x+12}
\left(x+2\right)\left(x+6\right) ವಿಸ್ತರಿಸಿ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{\left(x+4\right)\left(x+6\right)}-\frac{4}{\left(x+2\right)\left(x+4\right)})
ಅಪವರ್ತನ x^{2}+10x+24. ಅಪವರ್ತನ x^{2}+6x+8.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\left(x+2\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)}-\frac{4\left(x+6\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)})
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. \left(x+4\right)\left(x+6\right) ಮತ್ತು \left(x+2\right)\left(x+4\right) ಇವುಗಳ ಕನಿಷ್ಠ ಅಪವರ್ತ್ಯವು \left(x+2\right)\left(x+4\right)\left(x+6\right) ಆಗಿದೆ. \frac{x+2}{x+2} ಅನ್ನು \frac{x}{\left(x+4\right)\left(x+6\right)} ಬಾರಿ ಗುಣಿಸಿ. \frac{x+6}{x+6} ಅನ್ನು \frac{4}{\left(x+2\right)\left(x+4\right)} ಬಾರಿ ಗುಣಿಸಿ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\left(x+2\right)-4\left(x+6\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)})
\frac{x\left(x+2\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)} ಮತ್ತು \frac{4\left(x+6\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಕಳೆಯಿರಿ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{2}+2x-4x-24}{\left(x+2\right)\left(x+4\right)\left(x+6\right)})
x\left(x+2\right)-4\left(x+6\right) ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{2}-2x-24}{\left(x+2\right)\left(x+4\right)\left(x+6\right)})
x^{2}+2x-4x-24 ನಲ್ಲಿ ಅಂಶಗಳಂತೆ ಕೂಡಿಸಿ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(x-6\right)\left(x+4\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)})
ಈಗಾಗಲೇ \frac{x^{2}-2x-24}{\left(x+2\right)\left(x+4\right)\left(x+6\right)} ನಲ್ಲಿ ಅಪವರ್ತನಗೊಳಿಸದ ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x-6}{\left(x+2\right)\left(x+6\right)})
ಗಣಕ ಮತ್ತು ಛೇದ ಎರಡರಲ್ಲೂ x+4 ರದ್ದುಗೊಳಿಸಿ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x-6}{x^{2}+8x+12})
x+6 ರಿಂದು x+2 ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
\frac{\left(x^{2}+8x^{1}+12\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-6)-\left(x^{1}-6\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}+8x^{1}+12)}{\left(x^{2}+8x^{1}+12\right)^{2}}
ಯಾವುದೇ ಎರಡು ವ್ಯತ್ಯಾಸವಿಲ್ಲದ ಕಾರ್ಯಗಳಿಗೆ, ಎರಡು ಕಾರ್ಯಗಳ ಭಾಗಲಬ್ಧ ವ್ಯುತ್ಪನ್ನವು ಸಂಖ್ಯಾಕಾರ ವ್ಯುತ್ಪನ್ನದ ಛೇದದ ಸಮಯವನ್ನು ಛೇದದ ವ್ಯುತ್ಪನ್ನದ ಸಂಖ್ಯಾಕಾರ ಸಮಯದಲ್ಲಿ ವ್ಯವಕಲಿಸುತ್ತದೆ, ಎಲ್ಲವನ್ನು ವರ್ಗಮಾಡಲಾದ ಛೇದದಿಂದ ವಿಭಜಿಸಲಾಗಿದೆ.
\frac{\left(x^{2}+8x^{1}+12\right)x^{1-1}-\left(x^{1}-6\right)\left(2x^{2-1}+8x^{1-1}\right)}{\left(x^{2}+8x^{1}+12\right)^{2}}
ಬಹುಪದೀಯದ ವ್ಯುತ್ಪತ್ತಿಯು ಅದರ ಪದಗಳ ವ್ಯುತ್ಪತ್ತಿಗಳ ಮೊತ್ತವಾಗಿದೆ. ಯಾವುದೇ ಸ್ಥಿರ ಪದದ ವ್ಯುತ್ಪತ್ತಿಯು 0 ಆಗಿದೆ. ax^{n} ನ ವ್ಯುತ್ಪತ್ತಿಯು nax^{n-1} ಆಗಿದೆ.
\frac{\left(x^{2}+8x^{1}+12\right)x^{0}-\left(x^{1}-6\right)\left(2x^{1}+8x^{0}\right)}{\left(x^{2}+8x^{1}+12\right)^{2}}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
\frac{x^{2}x^{0}+8x^{1}x^{0}+12x^{0}-\left(x^{1}-6\right)\left(2x^{1}+8x^{0}\right)}{\left(x^{2}+8x^{1}+12\right)^{2}}
x^{0} ಅನ್ನು x^{2}+8x^{1}+12 ಬಾರಿ ಗುಣಿಸಿ.
\frac{x^{2}x^{0}+8x^{1}x^{0}+12x^{0}-\left(x^{1}\times 2x^{1}+x^{1}\times 8x^{0}-6\times 2x^{1}-6\times 8x^{0}\right)}{\left(x^{2}+8x^{1}+12\right)^{2}}
2x^{1}+8x^{0} ಅನ್ನು x^{1}-6 ಬಾರಿ ಗುಣಿಸಿ.
\frac{x^{2}+8x^{1}+12x^{0}-\left(2x^{1+1}+8x^{1}-6\times 2x^{1}-6\times 8x^{0}\right)}{\left(x^{2}+8x^{1}+12\right)^{2}}
ಒಂದೇ ಆಧಾರ ಸಂಖ್ಯೆಯ ಘಾತಗಳನ್ನು ಗುಣಿಸಲು ಅದರ ಘಾತಾಂಕಗಳನ್ನು ಸೇರಿಸಿ.
\frac{x^{2}+8x^{1}+12x^{0}-\left(2x^{2}+8x^{1}-12x^{1}-48x^{0}\right)}{\left(x^{2}+8x^{1}+12\right)^{2}}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
\frac{-x^{2}+12x^{1}+60x^{0}}{\left(x^{2}+8x^{1}+12\right)^{2}}
ಪದಗಳಂತೆ ಕೂಡಿಸಿ.
\frac{-x^{2}+12x+60x^{0}}{\left(x^{2}+8x+12\right)^{2}}
ಯಾವುದೇ ಪದಕ್ಕೆ t, t^{1}=t.
\frac{-x^{2}+12x+60\times 1}{\left(x^{2}+8x+12\right)^{2}}
0, t^{0}=1 ಹೊರತುಪಡಿಸಿ ಯಾವುದೇ ಪದ t ಗೆ.
\frac{-x^{2}+12x+60}{\left(x^{2}+8x+12\right)^{2}}
t, t\times 1=t ಮತ್ತು 1t=t ಪದಕ್ಕೆ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}