x ಪರಿಹರಿಸಿ
x=2
x=-2
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
\left(x+1\right)^{2}\left(x^{3}-1\right)-\left(x-1\right)^{2}\left(x^{3}+1\right)=6\left(x-1\right)^{2}\left(x+1\right)^{2}
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ ಯಾವುದೇ -1,1 ಮೌಲ್ಯಗಳಿಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು \left(x-1\right)^{2}\left(x+1\right)^{2}, \left(x-1\right)^{2},\left(x+1\right)^{2} ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
\left(x^{2}+2x+1\right)\left(x^{3}-1\right)-\left(x-1\right)^{2}\left(x^{3}+1\right)=6\left(x-1\right)^{2}\left(x+1\right)^{2}
\left(x+1\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ಬಳಸಿ.
x^{5}-x^{2}+2x^{4}-2x+x^{3}-1-\left(x-1\right)^{2}\left(x^{3}+1\right)=6\left(x-1\right)^{2}\left(x+1\right)^{2}
x^{3}-1 ದಿಂದ x^{2}+2x+1 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
x^{5}-x^{2}+2x^{4}-2x+x^{3}-1-\left(x^{2}-2x+1\right)\left(x^{3}+1\right)=6\left(x-1\right)^{2}\left(x+1\right)^{2}
\left(x-1\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ಬಳಸಿ.
x^{5}-x^{2}+2x^{4}-2x+x^{3}-1-\left(x^{5}+x^{2}-2x^{4}-2x+x^{3}+1\right)=6\left(x-1\right)^{2}\left(x+1\right)^{2}
x^{3}+1 ದಿಂದ x^{2}-2x+1 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
x^{5}-x^{2}+2x^{4}-2x+x^{3}-1-x^{5}-x^{2}+2x^{4}+2x-x^{3}-1=6\left(x-1\right)^{2}\left(x+1\right)^{2}
x^{5}+x^{2}-2x^{4}-2x+x^{3}+1 ವಿರುದ್ಧವನ್ನು ಹುಡುಕಲು, ಪ್ರತಿ ಪದದ ವಿರುದ್ಧ ಪದವನ್ನು ಹುಡುಕಿ.
-x^{2}+2x^{4}-2x+x^{3}-1-x^{2}+2x^{4}+2x-x^{3}-1=6\left(x-1\right)^{2}\left(x+1\right)^{2}
0 ಪಡೆದುಕೊಳ್ಳಲು x^{5} ಮತ್ತು -x^{5} ಕೂಡಿಸಿ.
-2x^{2}+2x^{4}-2x+x^{3}-1+2x^{4}+2x-x^{3}-1=6\left(x-1\right)^{2}\left(x+1\right)^{2}
-2x^{2} ಪಡೆದುಕೊಳ್ಳಲು -x^{2} ಮತ್ತು -x^{2} ಕೂಡಿಸಿ.
-2x^{2}+4x^{4}-2x+x^{3}-1+2x-x^{3}-1=6\left(x-1\right)^{2}\left(x+1\right)^{2}
4x^{4} ಪಡೆದುಕೊಳ್ಳಲು 2x^{4} ಮತ್ತು 2x^{4} ಕೂಡಿಸಿ.
-2x^{2}+4x^{4}+x^{3}-1-x^{3}-1=6\left(x-1\right)^{2}\left(x+1\right)^{2}
0 ಪಡೆದುಕೊಳ್ಳಲು -2x ಮತ್ತು 2x ಕೂಡಿಸಿ.
-2x^{2}+4x^{4}-1-1=6\left(x-1\right)^{2}\left(x+1\right)^{2}
0 ಪಡೆದುಕೊಳ್ಳಲು x^{3} ಮತ್ತು -x^{3} ಕೂಡಿಸಿ.
-2x^{2}+4x^{4}-2=6\left(x-1\right)^{2}\left(x+1\right)^{2}
-2 ಪಡೆದುಕೊಳ್ಳಲು -1 ದಿಂದ 1 ಕಳೆಯಿರಿ.
-2x^{2}+4x^{4}-2=6\left(x^{2}-2x+1\right)\left(x+1\right)^{2}
\left(x-1\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ಬಳಸಿ.
-2x^{2}+4x^{4}-2=6\left(x^{2}-2x+1\right)\left(x^{2}+2x+1\right)
\left(x+1\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ಬಳಸಿ.
-2x^{2}+4x^{4}-2=\left(6x^{2}-12x+6\right)\left(x^{2}+2x+1\right)
x^{2}-2x+1 ದಿಂದ 6 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
-2x^{2}+4x^{4}-2=6x^{4}-12x^{2}+6
x^{2}+2x+1 ರಿಂದು 6x^{2}-12x+6 ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
-2x^{2}+4x^{4}-2-6x^{4}=-12x^{2}+6
ಎರಡೂ ಕಡೆಗಳಿಂದ 6x^{4} ಕಳೆಯಿರಿ.
-2x^{2}-2x^{4}-2=-12x^{2}+6
-2x^{4} ಪಡೆದುಕೊಳ್ಳಲು 4x^{4} ಮತ್ತು -6x^{4} ಕೂಡಿಸಿ.
-2x^{2}-2x^{4}-2+12x^{2}=6
ಎರಡೂ ಬದಿಗಳಿಗೆ 12x^{2} ಸೇರಿಸಿ.
10x^{2}-2x^{4}-2=6
10x^{2} ಪಡೆದುಕೊಳ್ಳಲು -2x^{2} ಮತ್ತು 12x^{2} ಕೂಡಿಸಿ.
10x^{2}-2x^{4}-2-6=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 6 ಕಳೆಯಿರಿ.
10x^{2}-2x^{4}-8=0
-8 ಪಡೆದುಕೊಳ್ಳಲು -2 ದಿಂದ 6 ಕಳೆಯಿರಿ.
-2t^{2}+10t-8=0
x^{2} ಗಾಗಿ t ಬದಲಿಸಿ.
t=\frac{-10±\sqrt{10^{2}-4\left(-2\right)\left(-8\right)}}{-2\times 2}
ax^{2}+bx+c=0 ರೂಪದ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ಈ ವರ್ಗೀಯ ಸೂತ್ರ ಬಳಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗೀಯ ಸೂತ್ರದಲ್ಲಿ a ಗಾಗಿ -2 ಅನ್ನು,b ಗೆ 10 ಅನ್ನು ಮತ್ತು c ಗೆ -8 ಅನ್ನು ಬದಲಿ ಇರಿಸಿ.
t=\frac{-10±6}{-4}
ಲೆಕ್ಕಾಚಾರಗಳನ್ನು ಮಾಡಿ.
t=1 t=4
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ ಮತ್ತು ± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ t=\frac{-10±6}{-4} ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಿ.
x=1 x=-1 x=2 x=-2
x=t^{2} ಕಾರಣದಿಂದ, ಪ್ರತಿ t ಗೆ x=±\sqrt{t} ಅನ್ನು ಮೌಲ್ಯಮಾಪನ ಮಾಡುವ ಮೂಲಕ ಪರಿಹಾರಗಳನ್ನು ಪಡೆದುಕೊಳ್ಳಲಾಗಿದೆ.
x=-2 x=2
x ವೇರಿಯೇಬಲ್ ಯಾವುದೇ 1,-1 ಮೌಲ್ಯಗಳಿಗೆ ಸಮನಾಗಿರಬಾರದು.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}