ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ (ಸಂಕೀರ್ಣ ಪರಿಹಾರ)
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

\frac{1}{4}x^{2}-x+5=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-\left(-1\right)±\sqrt{1-4\times \frac{1}{4}\times 5}}{2\times \frac{1}{4}}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ \frac{1}{4}, b ಗೆ -1 ಮತ್ತು c ಗೆ 5 ಬದಲಿಸಿ.
x=\frac{-\left(-1\right)±\sqrt{1-5}}{2\times \frac{1}{4}}
\frac{1}{4} ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-1\right)±\sqrt{-4}}{2\times \frac{1}{4}}
-5 ಗೆ 1 ಸೇರಿಸಿ.
x=\frac{-\left(-1\right)±2i}{2\times \frac{1}{4}}
-4 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{1±2i}{2\times \frac{1}{4}}
-1 ನ ವಿಲೋಮವು 1 ಆಗಿದೆ.
x=\frac{1±2i}{\frac{1}{2}}
\frac{1}{4} ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{1+2i}{\frac{1}{2}}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{1±2i}{\frac{1}{2}} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2i ಗೆ 1 ಸೇರಿಸಿ.
x=2+4i
\frac{1}{2} ನ ವ್ಯುತ್ಕ್ರಮದಿಂದ 1+2i ಗುಣಿಸುವ ಮೂಲಕ \frac{1}{2} ದಿಂದ 1+2i ಭಾಗಿಸಿ.
x=\frac{1-2i}{\frac{1}{2}}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{1±2i}{\frac{1}{2}} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 1 ದಿಂದ 2i ಕಳೆಯಿರಿ.
x=2-4i
\frac{1}{2} ನ ವ್ಯುತ್ಕ್ರಮದಿಂದ 1-2i ಗುಣಿಸುವ ಮೂಲಕ \frac{1}{2} ದಿಂದ 1-2i ಭಾಗಿಸಿ.
x=2+4i x=2-4i
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
\frac{1}{4}x^{2}-x+5=0
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
\frac{1}{4}x^{2}-x+5-5=-5
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 5 ಕಳೆಯಿರಿ.
\frac{1}{4}x^{2}-x=-5
5 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
\frac{\frac{1}{4}x^{2}-x}{\frac{1}{4}}=-\frac{5}{\frac{1}{4}}
4 ಮೂಲಕ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
x^{2}+\left(-\frac{1}{\frac{1}{4}}\right)x=-\frac{5}{\frac{1}{4}}
\frac{1}{4} ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ \frac{1}{4} ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-4x=-\frac{5}{\frac{1}{4}}
\frac{1}{4} ನ ವ್ಯುತ್ಕ್ರಮದಿಂದ -1 ಗುಣಿಸುವ ಮೂಲಕ \frac{1}{4} ದಿಂದ -1 ಭಾಗಿಸಿ.
x^{2}-4x=-20
\frac{1}{4} ನ ವ್ಯುತ್ಕ್ರಮದಿಂದ -5 ಗುಣಿಸುವ ಮೂಲಕ \frac{1}{4} ದಿಂದ -5 ಭಾಗಿಸಿ.
x^{2}-4x+\left(-2\right)^{2}=-20+\left(-2\right)^{2}
-2 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -4 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -2 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-4x+4=-20+4
ವರ್ಗ -2.
x^{2}-4x+4=-16
4 ಗೆ -20 ಸೇರಿಸಿ.
\left(x-2\right)^{2}=-16
ಅಪವರ್ತನ x^{2}-4x+4. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-2\right)^{2}}=\sqrt{-16}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-2=4i x-2=-4i
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=2+4i x=2-4i
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 2 ಸೇರಿಸಿ.