x ಪರಿಹರಿಸಿ
x = -\frac{7}{3} = -2\frac{1}{3} \approx -2.333333333
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
\left(x+1\right)\left(x+1\right)=\left(x+2\right)\left(x-3\right)
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ ಯಾವುದೇ -2,-1 ಮೌಲ್ಯಗಳಿಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು \left(x+1\right)\left(x+2\right), x+2,x+1 ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
\left(x+1\right)^{2}=\left(x+2\right)\left(x-3\right)
\left(x+1\right)^{2} ಪಡೆದುಕೊಳ್ಳಲು x+1 ಮತ್ತು x+1 ಗುಣಿಸಿ.
x^{2}+2x+1=\left(x+2\right)\left(x-3\right)
\left(x+1\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ಬಳಸಿ.
x^{2}+2x+1=x^{2}-x-6
x-3 ರಿಂದು x+2 ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
x^{2}+2x+1-x^{2}=-x-6
ಎರಡೂ ಕಡೆಗಳಿಂದ x^{2} ಕಳೆಯಿರಿ.
2x+1=-x-6
0 ಪಡೆದುಕೊಳ್ಳಲು x^{2} ಮತ್ತು -x^{2} ಕೂಡಿಸಿ.
2x+1+x=-6
ಎರಡೂ ಬದಿಗಳಿಗೆ x ಸೇರಿಸಿ.
3x+1=-6
3x ಪಡೆದುಕೊಳ್ಳಲು 2x ಮತ್ತು x ಕೂಡಿಸಿ.
3x=-6-1
ಎರಡೂ ಕಡೆಗಳಿಂದ 1 ಕಳೆಯಿರಿ.
3x=-7
-7 ಪಡೆದುಕೊಳ್ಳಲು -6 ದಿಂದ 1 ಕಳೆಯಿರಿ.
x=\frac{-7}{3}
3 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x=-\frac{7}{3}
\frac{-7}{3} ಭಿನ್ನಾಂಶವನ್ನು ಋಣಾತ್ಮಕ ಚಿಹ್ನೆಯನ್ನು ಕಳೆಯುವುದರ ಮೂಲಕ -\frac{7}{3} ಎಂಬುದಾಗಿ ಮರಳಿ ಬರೆಯಬಹುದು.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}