ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
t ಪರಿಹರಿಸಿ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

2\left(t^{2}+3t\right)=t+7
ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು 4, 2,4 ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
2t^{2}+6t=t+7
t^{2}+3t ದಿಂದ 2 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
2t^{2}+6t-t=7
ಎರಡೂ ಕಡೆಗಳಿಂದ t ಕಳೆಯಿರಿ.
2t^{2}+5t=7
5t ಪಡೆದುಕೊಳ್ಳಲು 6t ಮತ್ತು -t ಕೂಡಿಸಿ.
2t^{2}+5t-7=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 7 ಕಳೆಯಿರಿ.
a+b=5 ab=2\left(-7\right)=-14
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು, ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಎಡಭಾಗದಲ್ಲಿ ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಎಡಭಾಗವನ್ನು 2t^{2}+at+bt-7 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
-1,14 -2,7
ab ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ವಿರುದ್ಧ ಚಿಹ್ನೆಗಳನ್ನು ಹೊಂದಿವೆ. a+b ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, ಧನಾತ್ಮಕ ಸಂಖ್ಯೆಯು ಋಣಾತ್ಮಕ ಸಂಖ್ಯೆಗಿಂತ ಅಧಿಕ ಪ್ರಮಾಣದ ಪರಿಪೂರ್ಣ ಮೌಲ್ಯವನ್ನು ಹೊಂದಿದೆ. ಉತ್ಪನ್ನ -14 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
-1+14=13 -2+7=5
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=-2 b=7
ಪರಿಹಾರವು 5 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(2t^{2}-2t\right)+\left(7t-7\right)
\left(2t^{2}-2t\right)+\left(7t-7\right) ನ ಹಾಗೆ 2t^{2}+5t-7 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
2t\left(t-1\right)+7\left(t-1\right)
ಮೊದಲನೆಯದರಲ್ಲಿ 2t ಅನ್ನು ಮತ್ತು ಎರಡನೆಯ ಗುಂಪಿನಲ್ಲಿ 7 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(t-1\right)\left(2t+7\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ t-1 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
t=1 t=-\frac{7}{2}
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, t-1=0 ಮತ್ತು 2t+7=0 ಪರಿಹರಿಸಿ.
2\left(t^{2}+3t\right)=t+7
ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು 4, 2,4 ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
2t^{2}+6t=t+7
t^{2}+3t ದಿಂದ 2 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
2t^{2}+6t-t=7
ಎರಡೂ ಕಡೆಗಳಿಂದ t ಕಳೆಯಿರಿ.
2t^{2}+5t=7
5t ಪಡೆದುಕೊಳ್ಳಲು 6t ಮತ್ತು -t ಕೂಡಿಸಿ.
2t^{2}+5t-7=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 7 ಕಳೆಯಿರಿ.
t=\frac{-5±\sqrt{5^{2}-4\times 2\left(-7\right)}}{2\times 2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 2, b ಗೆ 5 ಮತ್ತು c ಗೆ -7 ಬದಲಿಸಿ.
t=\frac{-5±\sqrt{25-4\times 2\left(-7\right)}}{2\times 2}
ವರ್ಗ 5.
t=\frac{-5±\sqrt{25-8\left(-7\right)}}{2\times 2}
2 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
t=\frac{-5±\sqrt{25+56}}{2\times 2}
-7 ಅನ್ನು -8 ಬಾರಿ ಗುಣಿಸಿ.
t=\frac{-5±\sqrt{81}}{2\times 2}
56 ಗೆ 25 ಸೇರಿಸಿ.
t=\frac{-5±9}{2\times 2}
81 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
t=\frac{-5±9}{4}
2 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
t=\frac{4}{4}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ t=\frac{-5±9}{4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 9 ಗೆ -5 ಸೇರಿಸಿ.
t=1
4 ದಿಂದ 4 ಭಾಗಿಸಿ.
t=-\frac{14}{4}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ t=\frac{-5±9}{4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -5 ದಿಂದ 9 ಕಳೆಯಿರಿ.
t=-\frac{7}{2}
2 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{-14}{4} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
t=1 t=-\frac{7}{2}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
2\left(t^{2}+3t\right)=t+7
ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು 4, 2,4 ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
2t^{2}+6t=t+7
t^{2}+3t ದಿಂದ 2 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
2t^{2}+6t-t=7
ಎರಡೂ ಕಡೆಗಳಿಂದ t ಕಳೆಯಿರಿ.
2t^{2}+5t=7
5t ಪಡೆದುಕೊಳ್ಳಲು 6t ಮತ್ತು -t ಕೂಡಿಸಿ.
\frac{2t^{2}+5t}{2}=\frac{7}{2}
2 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
t^{2}+\frac{5}{2}t=\frac{7}{2}
2 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 2 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
t^{2}+\frac{5}{2}t+\left(\frac{5}{4}\right)^{2}=\frac{7}{2}+\left(\frac{5}{4}\right)^{2}
\frac{5}{4} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ \frac{5}{2} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ \frac{5}{4} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
t^{2}+\frac{5}{2}t+\frac{25}{16}=\frac{7}{2}+\frac{25}{16}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ \frac{5}{4} ವರ್ಗಗೊಳಿಸಿ.
t^{2}+\frac{5}{2}t+\frac{25}{16}=\frac{81}{16}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{25}{16} ಗೆ \frac{7}{2} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
\left(t+\frac{5}{4}\right)^{2}=\frac{81}{16}
ಅಪವರ್ತನ t^{2}+\frac{5}{2}t+\frac{25}{16}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(t+\frac{5}{4}\right)^{2}}=\sqrt{\frac{81}{16}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
t+\frac{5}{4}=\frac{9}{4} t+\frac{5}{4}=-\frac{9}{4}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
t=1 t=-\frac{7}{2}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{5}{4} ಕಳೆಯಿರಿ.