ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಮೌಲ್ಯಮಾಪನ
Tick mark Image
ವಿಸ್ತರಿಸು
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

\frac{\frac{n\left(n-m\right)}{n-m}-\frac{n^{2}}{n-m}}{1+\frac{m^{2}}{n^{2}-m^{2}}}
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. \frac{n-m}{n-m} ಅನ್ನು n ಬಾರಿ ಗುಣಿಸಿ.
\frac{\frac{n\left(n-m\right)-n^{2}}{n-m}}{1+\frac{m^{2}}{n^{2}-m^{2}}}
\frac{n\left(n-m\right)}{n-m} ಮತ್ತು \frac{n^{2}}{n-m} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಕಳೆಯಿರಿ.
\frac{\frac{n^{2}-nm-n^{2}}{n-m}}{1+\frac{m^{2}}{n^{2}-m^{2}}}
n\left(n-m\right)-n^{2} ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{\frac{-nm}{n-m}}{1+\frac{m^{2}}{n^{2}-m^{2}}}
n^{2}-nm-n^{2} ನಲ್ಲಿ ಅಂಶಗಳಂತೆ ಕೂಡಿಸಿ.
\frac{\frac{-nm}{n-m}}{1+\frac{m^{2}}{\left(m+n\right)\left(-m+n\right)}}
ಅಪವರ್ತನ n^{2}-m^{2}.
\frac{\frac{-nm}{n-m}}{\frac{\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)}+\frac{m^{2}}{\left(m+n\right)\left(-m+n\right)}}
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. \frac{\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)} ಅನ್ನು 1 ಬಾರಿ ಗುಣಿಸಿ.
\frac{\frac{-nm}{n-m}}{\frac{\left(m+n\right)\left(-m+n\right)+m^{2}}{\left(m+n\right)\left(-m+n\right)}}
\frac{\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)} ಮತ್ತು \frac{m^{2}}{\left(m+n\right)\left(-m+n\right)} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಸೇರಿಸಿ.
\frac{\frac{-nm}{n-m}}{\frac{-m^{2}+mn-nm+n^{2}+m^{2}}{\left(m+n\right)\left(-m+n\right)}}
\left(m+n\right)\left(-m+n\right)+m^{2} ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{\frac{-nm}{n-m}}{\frac{n^{2}}{\left(m+n\right)\left(-m+n\right)}}
-m^{2}+mn-nm+n^{2}+m^{2} ನಲ್ಲಿ ಅಂಶಗಳಂತೆ ಕೂಡಿಸಿ.
\frac{-nm\left(m+n\right)\left(-m+n\right)}{\left(n-m\right)n^{2}}
\frac{n^{2}}{\left(m+n\right)\left(-m+n\right)} ನ ವ್ಯುತ್ಕ್ರಮದಿಂದ \frac{-nm}{n-m} ಗುಣಿಸುವ ಮೂಲಕ \frac{n^{2}}{\left(m+n\right)\left(-m+n\right)} ದಿಂದ \frac{-nm}{n-m} ಭಾಗಿಸಿ.
\frac{-m\left(m+n\right)}{n}
ಗಣಕ ಮತ್ತು ಛೇದ ಎರಡರಲ್ಲೂ n\left(-m+n\right) ರದ್ದುಗೊಳಿಸಿ.
\frac{-m^{2}-mn}{n}
m+n ದಿಂದ -m ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
\frac{\frac{n\left(n-m\right)}{n-m}-\frac{n^{2}}{n-m}}{1+\frac{m^{2}}{n^{2}-m^{2}}}
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. \frac{n-m}{n-m} ಅನ್ನು n ಬಾರಿ ಗುಣಿಸಿ.
\frac{\frac{n\left(n-m\right)-n^{2}}{n-m}}{1+\frac{m^{2}}{n^{2}-m^{2}}}
\frac{n\left(n-m\right)}{n-m} ಮತ್ತು \frac{n^{2}}{n-m} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಕಳೆಯಿರಿ.
\frac{\frac{n^{2}-nm-n^{2}}{n-m}}{1+\frac{m^{2}}{n^{2}-m^{2}}}
n\left(n-m\right)-n^{2} ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{\frac{-nm}{n-m}}{1+\frac{m^{2}}{n^{2}-m^{2}}}
n^{2}-nm-n^{2} ನಲ್ಲಿ ಅಂಶಗಳಂತೆ ಕೂಡಿಸಿ.
\frac{\frac{-nm}{n-m}}{1+\frac{m^{2}}{\left(m+n\right)\left(-m+n\right)}}
ಅಪವರ್ತನ n^{2}-m^{2}.
\frac{\frac{-nm}{n-m}}{\frac{\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)}+\frac{m^{2}}{\left(m+n\right)\left(-m+n\right)}}
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. \frac{\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)} ಅನ್ನು 1 ಬಾರಿ ಗುಣಿಸಿ.
\frac{\frac{-nm}{n-m}}{\frac{\left(m+n\right)\left(-m+n\right)+m^{2}}{\left(m+n\right)\left(-m+n\right)}}
\frac{\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)} ಮತ್ತು \frac{m^{2}}{\left(m+n\right)\left(-m+n\right)} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಸೇರಿಸಿ.
\frac{\frac{-nm}{n-m}}{\frac{-m^{2}+mn-nm+n^{2}+m^{2}}{\left(m+n\right)\left(-m+n\right)}}
\left(m+n\right)\left(-m+n\right)+m^{2} ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{\frac{-nm}{n-m}}{\frac{n^{2}}{\left(m+n\right)\left(-m+n\right)}}
-m^{2}+mn-nm+n^{2}+m^{2} ನಲ್ಲಿ ಅಂಶಗಳಂತೆ ಕೂಡಿಸಿ.
\frac{-nm\left(m+n\right)\left(-m+n\right)}{\left(n-m\right)n^{2}}
\frac{n^{2}}{\left(m+n\right)\left(-m+n\right)} ನ ವ್ಯುತ್ಕ್ರಮದಿಂದ \frac{-nm}{n-m} ಗುಣಿಸುವ ಮೂಲಕ \frac{n^{2}}{\left(m+n\right)\left(-m+n\right)} ದಿಂದ \frac{-nm}{n-m} ಭಾಗಿಸಿ.
\frac{-m\left(m+n\right)}{n}
ಗಣಕ ಮತ್ತು ಛೇದ ಎರಡರಲ್ಲೂ n\left(-m+n\right) ರದ್ದುಗೊಳಿಸಿ.
\frac{-m^{2}-mn}{n}
m+n ದಿಂದ -m ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.