ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
n ಪರಿಹರಿಸಿ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

n\left(n-1\right)=63\times 2
2 ಮೂಲಕ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
n^{2}-n=63\times 2
n-1 ದಿಂದ n ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
n^{2}-n=126
126 ಪಡೆದುಕೊಳ್ಳಲು 63 ಮತ್ತು 2 ಗುಣಿಸಿ.
n^{2}-n-126=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 126 ಕಳೆಯಿರಿ.
n=\frac{-\left(-1\right)±\sqrt{1-4\left(-126\right)}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ -1 ಮತ್ತು c ಗೆ -126 ಬದಲಿಸಿ.
n=\frac{-\left(-1\right)±\sqrt{1+504}}{2}
-126 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
n=\frac{-\left(-1\right)±\sqrt{505}}{2}
504 ಗೆ 1 ಸೇರಿಸಿ.
n=\frac{1±\sqrt{505}}{2}
-1 ನ ವಿಲೋಮವು 1 ಆಗಿದೆ.
n=\frac{\sqrt{505}+1}{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ n=\frac{1±\sqrt{505}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. \sqrt{505} ಗೆ 1 ಸೇರಿಸಿ.
n=\frac{1-\sqrt{505}}{2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ n=\frac{1±\sqrt{505}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 1 ದಿಂದ \sqrt{505} ಕಳೆಯಿರಿ.
n=\frac{\sqrt{505}+1}{2} n=\frac{1-\sqrt{505}}{2}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
n\left(n-1\right)=63\times 2
2 ಮೂಲಕ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
n^{2}-n=63\times 2
n-1 ದಿಂದ n ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
n^{2}-n=126
126 ಪಡೆದುಕೊಳ್ಳಲು 63 ಮತ್ತು 2 ಗುಣಿಸಿ.
n^{2}-n+\left(-\frac{1}{2}\right)^{2}=126+\left(-\frac{1}{2}\right)^{2}
-\frac{1}{2} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -1 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{1}{2} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
n^{2}-n+\frac{1}{4}=126+\frac{1}{4}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{1}{2} ವರ್ಗಗೊಳಿಸಿ.
n^{2}-n+\frac{1}{4}=\frac{505}{4}
\frac{1}{4} ಗೆ 126 ಸೇರಿಸಿ.
\left(n-\frac{1}{2}\right)^{2}=\frac{505}{4}
ಅಪವರ್ತನ n^{2}-n+\frac{1}{4}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(n-\frac{1}{2}\right)^{2}}=\sqrt{\frac{505}{4}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
n-\frac{1}{2}=\frac{\sqrt{505}}{2} n-\frac{1}{2}=-\frac{\sqrt{505}}{2}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
n=\frac{\sqrt{505}+1}{2} n=\frac{1-\sqrt{505}}{2}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{1}{2} ಸೇರಿಸಿ.