ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
A ಪರಿಹರಿಸಿ
Tick mark Image
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

ye-x\pi =Axy
ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು xy, x,y ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
Axy=ye-x\pi
ಎಲ್ಲಾ ವೇರಿಯೇಬಲ್ ಪದಗಳು ಎಡಬದಿಯಲ್ಲಿರುವಂತೆ ಬದಿಗಳನ್ನು ಬದಲಿಕೆ ಮಾಡಿ.
Axy=-\pi x+ey
ಪದಗಳನ್ನು ಮರುಕ್ರಮಗೊಳಿಸಿ.
xyA=ey-\pi x
ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ರೂಪದಲ್ಲಿದೆ.
\frac{xyA}{xy}=\frac{ey-\pi x}{xy}
xy ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
A=\frac{ey-\pi x}{xy}
xy ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ xy ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
A=\frac{e}{x}-\frac{\pi }{y}
xy ದಿಂದ ey-\pi x ಭಾಗಿಸಿ.
ye-x\pi =Axy
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು xy, x,y ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
ye-x\pi -Axy=0
ಎರಡೂ ಕಡೆಗಳಿಂದ Axy ಕಳೆಯಿರಿ.
-x\pi -Axy=-ye
ಎರಡೂ ಕಡೆಗಳಿಂದ ye ಕಳೆಯಿರಿ. ಶೂನ್ಯದಿಂದ ಏನನ್ನಾದರೂ ಕಳೆದರೆ ಅದರ ಋಣಾತ್ಮಕವನ್ನು ನೀಡುತ್ತದೆ.
\left(-\pi -Ay\right)x=-ye
x ಹೊಂದಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು ಕೂಡಿಸಿ.
\left(-Ay-\pi \right)x=-ey
ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ರೂಪದಲ್ಲಿದೆ.
\frac{\left(-Ay-\pi \right)x}{-Ay-\pi }=-\frac{ey}{-Ay-\pi }
-\pi -yA ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x=-\frac{ey}{-Ay-\pi }
-\pi -yA ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -\pi -yA ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x=\frac{ey}{Ay+\pi }
-\pi -yA ದಿಂದ -ye ಭಾಗಿಸಿ.
x=\frac{ey}{Ay+\pi }\text{, }x\neq 0
x ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮಾನಾಗಿರಬಾರದು.