ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಮೌಲ್ಯಮಾಪನ
Tick mark Image
ವಿಸ್ತರಿಸು
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

\frac{a+1}{a\left(a-1\right)}-\frac{1-a}{a\left(a+1\right)}
ಅಪವರ್ತನ a^{2}-a. ಅಪವರ್ತನ a^{2}+a.
\frac{\left(a+1\right)\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)}-\frac{\left(1-a\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)}
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. a\left(a-1\right) ಮತ್ತು a\left(a+1\right) ಇವುಗಳ ಕನಿಷ್ಠ ಅಪವರ್ತ್ಯವು a\left(a-1\right)\left(a+1\right) ಆಗಿದೆ. \frac{a+1}{a+1} ಅನ್ನು \frac{a+1}{a\left(a-1\right)} ಬಾರಿ ಗುಣಿಸಿ. \frac{a-1}{a-1} ಅನ್ನು \frac{1-a}{a\left(a+1\right)} ಬಾರಿ ಗುಣಿಸಿ.
\frac{\left(a+1\right)\left(a+1\right)-\left(1-a\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)}
\frac{\left(a+1\right)\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)} ಮತ್ತು \frac{\left(1-a\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಕಳೆಯಿರಿ.
\frac{a^{2}+a+a+1-a+1+a^{2}-a}{a\left(a-1\right)\left(a+1\right)}
\left(a+1\right)\left(a+1\right)-\left(1-a\right)\left(a-1\right) ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{2a^{2}+2}{a\left(a-1\right)\left(a+1\right)}
a^{2}+a+a+1-a+1+a^{2}-a ನಲ್ಲಿ ಅಂಶಗಳಂತೆ ಕೂಡಿಸಿ.
\frac{2a^{2}+2}{a^{3}-a}
a\left(a-1\right)\left(a+1\right) ವಿಸ್ತರಿಸಿ.
\frac{a+1}{a\left(a-1\right)}-\frac{1-a}{a\left(a+1\right)}
ಅಪವರ್ತನ a^{2}-a. ಅಪವರ್ತನ a^{2}+a.
\frac{\left(a+1\right)\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)}-\frac{\left(1-a\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)}
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. a\left(a-1\right) ಮತ್ತು a\left(a+1\right) ಇವುಗಳ ಕನಿಷ್ಠ ಅಪವರ್ತ್ಯವು a\left(a-1\right)\left(a+1\right) ಆಗಿದೆ. \frac{a+1}{a+1} ಅನ್ನು \frac{a+1}{a\left(a-1\right)} ಬಾರಿ ಗುಣಿಸಿ. \frac{a-1}{a-1} ಅನ್ನು \frac{1-a}{a\left(a+1\right)} ಬಾರಿ ಗುಣಿಸಿ.
\frac{\left(a+1\right)\left(a+1\right)-\left(1-a\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)}
\frac{\left(a+1\right)\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)} ಮತ್ತು \frac{\left(1-a\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಕಳೆಯಿರಿ.
\frac{a^{2}+a+a+1-a+1+a^{2}-a}{a\left(a-1\right)\left(a+1\right)}
\left(a+1\right)\left(a+1\right)-\left(1-a\right)\left(a-1\right) ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{2a^{2}+2}{a\left(a-1\right)\left(a+1\right)}
a^{2}+a+a+1-a+1+a^{2}-a ನಲ್ಲಿ ಅಂಶಗಳಂತೆ ಕೂಡಿಸಿ.
\frac{2a^{2}+2}{a^{3}-a}
a\left(a-1\right)\left(a+1\right) ವಿಸ್ತರಿಸಿ.