ಮೌಲ್ಯಮಾಪನ
-5\sqrt{6}\approx -12.247448714
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
\frac{9\left(\sqrt{7}+2\right)}{\left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right)}-\frac{4}{3+\sqrt{7}}+\frac{5}{\sqrt{6}-\sqrt{7}}
\frac{9}{\sqrt{7}-2} ಅನ್ನು ಗುಣಿಸುವ ಮೂಲಕ ಛೇದವನ್ನು ಮತ್ತು \sqrt{7}+2 ಮೂಲಕ ಛೇದ ಮತ್ತು ಅಂಶವನ್ನು ತರ್ಕಬದ್ಧವಾಗಿಸಿ.
\frac{9\left(\sqrt{7}+2\right)}{\left(\sqrt{7}\right)^{2}-2^{2}}-\frac{4}{3+\sqrt{7}}+\frac{5}{\sqrt{6}-\sqrt{7}}
\left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right) ಪರಿಗಣಿಸಿ. ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{9\left(\sqrt{7}+2\right)}{7-4}-\frac{4}{3+\sqrt{7}}+\frac{5}{\sqrt{6}-\sqrt{7}}
ವರ್ಗ \sqrt{7}. ವರ್ಗ 2.
\frac{9\left(\sqrt{7}+2\right)}{3}-\frac{4}{3+\sqrt{7}}+\frac{5}{\sqrt{6}-\sqrt{7}}
3 ಪಡೆದುಕೊಳ್ಳಲು 7 ದಿಂದ 4 ಕಳೆಯಿರಿ.
3\left(\sqrt{7}+2\right)-\frac{4}{3+\sqrt{7}}+\frac{5}{\sqrt{6}-\sqrt{7}}
3\left(\sqrt{7}+2\right) ಪಡೆಯಲು 3 ರಿಂದ 9\left(\sqrt{7}+2\right) ವಿಭಾಗಿಸಿ.
3\left(\sqrt{7}+2\right)-\frac{4\left(3-\sqrt{7}\right)}{\left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right)}+\frac{5}{\sqrt{6}-\sqrt{7}}
\frac{4}{3+\sqrt{7}} ಅನ್ನು ಗುಣಿಸುವ ಮೂಲಕ ಛೇದವನ್ನು ಮತ್ತು 3-\sqrt{7} ಮೂಲಕ ಛೇದ ಮತ್ತು ಅಂಶವನ್ನು ತರ್ಕಬದ್ಧವಾಗಿಸಿ.
3\left(\sqrt{7}+2\right)-\frac{4\left(3-\sqrt{7}\right)}{3^{2}-\left(\sqrt{7}\right)^{2}}+\frac{5}{\sqrt{6}-\sqrt{7}}
\left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right) ಪರಿಗಣಿಸಿ. ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3\left(\sqrt{7}+2\right)-\frac{4\left(3-\sqrt{7}\right)}{9-7}+\frac{5}{\sqrt{6}-\sqrt{7}}
ವರ್ಗ 3. ವರ್ಗ \sqrt{7}.
3\left(\sqrt{7}+2\right)-\frac{4\left(3-\sqrt{7}\right)}{2}+\frac{5}{\sqrt{6}-\sqrt{7}}
2 ಪಡೆದುಕೊಳ್ಳಲು 9 ದಿಂದ 7 ಕಳೆಯಿರಿ.
3\left(\sqrt{7}+2\right)-2\left(3-\sqrt{7}\right)+\frac{5}{\sqrt{6}-\sqrt{7}}
2\left(3-\sqrt{7}\right) ಪಡೆಯಲು 2 ರಿಂದ 4\left(3-\sqrt{7}\right) ವಿಭಾಗಿಸಿ.
3\left(\sqrt{7}+2\right)-2\left(3-\sqrt{7}\right)+\frac{5\left(\sqrt{6}+\sqrt{7}\right)}{\left(\sqrt{6}-\sqrt{7}\right)\left(\sqrt{6}+\sqrt{7}\right)}
\frac{5}{\sqrt{6}-\sqrt{7}} ಅನ್ನು ಗುಣಿಸುವ ಮೂಲಕ ಛೇದವನ್ನು ಮತ್ತು \sqrt{6}+\sqrt{7} ಮೂಲಕ ಛೇದ ಮತ್ತು ಅಂಶವನ್ನು ತರ್ಕಬದ್ಧವಾಗಿಸಿ.
3\left(\sqrt{7}+2\right)-2\left(3-\sqrt{7}\right)+\frac{5\left(\sqrt{6}+\sqrt{7}\right)}{\left(\sqrt{6}\right)^{2}-\left(\sqrt{7}\right)^{2}}
\left(\sqrt{6}-\sqrt{7}\right)\left(\sqrt{6}+\sqrt{7}\right) ಪರಿಗಣಿಸಿ. ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3\left(\sqrt{7}+2\right)-2\left(3-\sqrt{7}\right)+\frac{5\left(\sqrt{6}+\sqrt{7}\right)}{6-7}
ವರ್ಗ \sqrt{6}. ವರ್ಗ \sqrt{7}.
3\left(\sqrt{7}+2\right)-2\left(3-\sqrt{7}\right)+\frac{5\left(\sqrt{6}+\sqrt{7}\right)}{-1}
-1 ಪಡೆದುಕೊಳ್ಳಲು 6 ದಿಂದ 7 ಕಳೆಯಿರಿ.
3\left(\sqrt{7}+2\right)-2\left(3-\sqrt{7}\right)-5\left(\sqrt{6}+\sqrt{7}\right)
ಯಾವುದನ್ನಾದರೂ -1 ರಿಂದ ವಿಭಜಿಸಿದರೆ ವಿರುದ್ಧವಾದುದನ್ನು ಕೊಡುತ್ತದೆ.
3\sqrt{7}+6-2\left(3-\sqrt{7}\right)-5\left(\sqrt{6}+\sqrt{7}\right)
\sqrt{7}+2 ದಿಂದ 3 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
3\sqrt{7}+6-\left(6-2\sqrt{7}\right)-5\left(\sqrt{6}+\sqrt{7}\right)
3-\sqrt{7} ದಿಂದ 2 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
3\sqrt{7}+6-6-\left(-2\sqrt{7}\right)-5\left(\sqrt{6}+\sqrt{7}\right)
6-2\sqrt{7} ವಿರುದ್ಧವನ್ನು ಹುಡುಕಲು, ಪ್ರತಿ ಪದದ ವಿರುದ್ಧ ಪದವನ್ನು ಹುಡುಕಿ.
3\sqrt{7}+6-6+2\sqrt{7}-5\left(\sqrt{6}+\sqrt{7}\right)
-2\sqrt{7} ನ ವಿಲೋಮವು 2\sqrt{7} ಆಗಿದೆ.
3\sqrt{7}+2\sqrt{7}-5\left(\sqrt{6}+\sqrt{7}\right)
0 ಪಡೆದುಕೊಳ್ಳಲು 6 ದಿಂದ 6 ಕಳೆಯಿರಿ.
5\sqrt{7}-5\left(\sqrt{6}+\sqrt{7}\right)
5\sqrt{7} ಪಡೆದುಕೊಳ್ಳಲು 3\sqrt{7} ಮತ್ತು 2\sqrt{7} ಕೂಡಿಸಿ.
5\sqrt{7}-5\sqrt{6}-5\sqrt{7}
\sqrt{6}+\sqrt{7} ದಿಂದ -5 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
-5\sqrt{6}
0 ಪಡೆದುಕೊಳ್ಳಲು 5\sqrt{7} ಮತ್ತು -5\sqrt{7} ಕೂಡಿಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}