ಮೌಲ್ಯಮಾಪನ
\frac{\sqrt{2}-10}{14}\approx -0.61327046
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
\frac{7\left(-10+\sqrt{2}\right)}{\left(-10-\sqrt{2}\right)\left(-10+\sqrt{2}\right)}
\frac{7}{-10-\sqrt{2}} ಅನ್ನು ಗುಣಿಸುವ ಮೂಲಕ ಛೇದವನ್ನು ಮತ್ತು -10+\sqrt{2} ಮೂಲಕ ಛೇದ ಮತ್ತು ಅಂಶವನ್ನು ತರ್ಕಬದ್ಧವಾಗಿಸಿ.
\frac{7\left(-10+\sqrt{2}\right)}{\left(-10\right)^{2}-\left(\sqrt{2}\right)^{2}}
\left(-10-\sqrt{2}\right)\left(-10+\sqrt{2}\right) ಪರಿಗಣಿಸಿ. ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{7\left(-10+\sqrt{2}\right)}{100-2}
ವರ್ಗ -10. ವರ್ಗ \sqrt{2}.
\frac{7\left(-10+\sqrt{2}\right)}{98}
98 ಪಡೆದುಕೊಳ್ಳಲು 100 ದಿಂದ 2 ಕಳೆಯಿರಿ.
\frac{1}{14}\left(-10+\sqrt{2}\right)
\frac{1}{14}\left(-10+\sqrt{2}\right) ಪಡೆಯಲು 98 ರಿಂದ 7\left(-10+\sqrt{2}\right) ವಿಭಾಗಿಸಿ.
\frac{1}{14}\left(-10\right)+\frac{1}{14}\sqrt{2}
-10+\sqrt{2} ದಿಂದ \frac{1}{14} ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
\frac{-10}{14}+\frac{1}{14}\sqrt{2}
\frac{-10}{14} ಪಡೆದುಕೊಳ್ಳಲು \frac{1}{14} ಮತ್ತು -10 ಗುಣಿಸಿ.
-\frac{5}{7}+\frac{1}{14}\sqrt{2}
2 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{-10}{14} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}