ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಮೌಲ್ಯಮಾಪನ
Tick mark Image
ವಿಸ್ತರಿಸು
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

\frac{6m+mn}{4mn^{2}}-36
ಏಕ ಭಿನ್ನಾಂಶವಾಗಿ \frac{\frac{6m+mn}{4m}}{n^{2}} ಅನ್ನು ವ್ಯಕ್ತಪಡಿಸಿ.
\frac{m\left(n+6\right)}{4mn^{2}}-36
ಈಗಾಗಲೇ \frac{6m+mn}{4mn^{2}} ನಲ್ಲಿ ಅಪವರ್ತನಗೊಳಿಸದ ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\frac{n+6}{4n^{2}}-36
ಗಣಕ ಮತ್ತು ಛೇದ ಎರಡರಲ್ಲೂ m ರದ್ದುಗೊಳಿಸಿ.
\frac{n+6}{4n^{2}}-\frac{36\times 4n^{2}}{4n^{2}}
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. \frac{4n^{2}}{4n^{2}} ಅನ್ನು 36 ಬಾರಿ ಗುಣಿಸಿ.
\frac{n+6-36\times 4n^{2}}{4n^{2}}
\frac{n+6}{4n^{2}} ಮತ್ತು \frac{36\times 4n^{2}}{4n^{2}} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಕಳೆಯಿರಿ.
\frac{n+6-144n^{2}}{4n^{2}}
n+6-36\times 4n^{2} ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{-144\left(n-\left(-\frac{1}{288}\sqrt{3457}+\frac{1}{288}\right)\right)\left(n-\left(\frac{1}{288}\sqrt{3457}+\frac{1}{288}\right)\right)}{4n^{2}}
ಈಗಾಗಲೇ \frac{n+6-144n^{2}}{4n^{2}} ನಲ್ಲಿ ಅಪವರ್ತನಗೊಳಿಸದ ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\frac{-36\left(n-\left(-\frac{1}{288}\sqrt{3457}+\frac{1}{288}\right)\right)\left(n-\left(\frac{1}{288}\sqrt{3457}+\frac{1}{288}\right)\right)}{n^{2}}
ಗಣಕ ಮತ್ತು ಛೇದ ಎರಡರಲ್ಲೂ 4 ರದ್ದುಗೊಳಿಸಿ.
\frac{-36\left(n+\frac{1}{288}\sqrt{3457}-\frac{1}{288}\right)\left(n-\left(\frac{1}{288}\sqrt{3457}+\frac{1}{288}\right)\right)}{n^{2}}
-\frac{1}{288}\sqrt{3457}+\frac{1}{288} ವಿರುದ್ಧವನ್ನು ಹುಡುಕಲು, ಪ್ರತಿ ಪದದ ವಿರುದ್ಧ ಪದವನ್ನು ಹುಡುಕಿ.
\frac{-36\left(n+\frac{1}{288}\sqrt{3457}-\frac{1}{288}\right)\left(n-\frac{1}{288}\sqrt{3457}-\frac{1}{288}\right)}{n^{2}}
\frac{1}{288}\sqrt{3457}+\frac{1}{288} ವಿರುದ್ಧವನ್ನು ಹುಡುಕಲು, ಪ್ರತಿ ಪದದ ವಿರುದ್ಧ ಪದವನ್ನು ಹುಡುಕಿ.
\frac{\left(-36n-\frac{1}{8}\sqrt{3457}+\frac{1}{8}\right)\left(n-\frac{1}{288}\sqrt{3457}-\frac{1}{288}\right)}{n^{2}}
n+\frac{1}{288}\sqrt{3457}-\frac{1}{288} ದಿಂದ -36 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
\frac{-36n^{2}+\frac{1}{4}n+\frac{1}{2304}\left(\sqrt{3457}\right)^{2}-\frac{1}{2304}}{n^{2}}
n-\frac{1}{288}\sqrt{3457}-\frac{1}{288} ರಿಂದು -36n-\frac{1}{8}\sqrt{3457}+\frac{1}{8} ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
\frac{-36n^{2}+\frac{1}{4}n+\frac{1}{2304}\times 3457-\frac{1}{2304}}{n^{2}}
\sqrt{3457} ವರ್ಗವು 3457 ಆಗಿದೆ.
\frac{-36n^{2}+\frac{1}{4}n+\frac{3457}{2304}-\frac{1}{2304}}{n^{2}}
\frac{3457}{2304} ಪಡೆದುಕೊಳ್ಳಲು \frac{1}{2304} ಮತ್ತು 3457 ಗುಣಿಸಿ.
\frac{-36n^{2}+\frac{1}{4}n+\frac{3}{2}}{n^{2}}
\frac{3}{2} ಪಡೆದುಕೊಳ್ಳಲು \frac{3457}{2304} ದಿಂದ \frac{1}{2304} ಕಳೆಯಿರಿ.
\frac{6m+mn}{4mn^{2}}-36
ಏಕ ಭಿನ್ನಾಂಶವಾಗಿ \frac{\frac{6m+mn}{4m}}{n^{2}} ಅನ್ನು ವ್ಯಕ್ತಪಡಿಸಿ.
\frac{m\left(n+6\right)}{4mn^{2}}-36
ಈಗಾಗಲೇ \frac{6m+mn}{4mn^{2}} ನಲ್ಲಿ ಅಪವರ್ತನಗೊಳಿಸದ ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\frac{n+6}{4n^{2}}-36
ಗಣಕ ಮತ್ತು ಛೇದ ಎರಡರಲ್ಲೂ m ರದ್ದುಗೊಳಿಸಿ.
\frac{n+6}{4n^{2}}-\frac{36\times 4n^{2}}{4n^{2}}
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. \frac{4n^{2}}{4n^{2}} ಅನ್ನು 36 ಬಾರಿ ಗುಣಿಸಿ.
\frac{n+6-36\times 4n^{2}}{4n^{2}}
\frac{n+6}{4n^{2}} ಮತ್ತು \frac{36\times 4n^{2}}{4n^{2}} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಕಳೆಯಿರಿ.
\frac{n+6-144n^{2}}{4n^{2}}
n+6-36\times 4n^{2} ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{-144\left(n-\left(-\frac{1}{288}\sqrt{3457}+\frac{1}{288}\right)\right)\left(n-\left(\frac{1}{288}\sqrt{3457}+\frac{1}{288}\right)\right)}{4n^{2}}
ಈಗಾಗಲೇ \frac{n+6-144n^{2}}{4n^{2}} ನಲ್ಲಿ ಅಪವರ್ತನಗೊಳಿಸದ ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\frac{-36\left(n-\left(-\frac{1}{288}\sqrt{3457}+\frac{1}{288}\right)\right)\left(n-\left(\frac{1}{288}\sqrt{3457}+\frac{1}{288}\right)\right)}{n^{2}}
ಗಣಕ ಮತ್ತು ಛೇದ ಎರಡರಲ್ಲೂ 4 ರದ್ದುಗೊಳಿಸಿ.
\frac{-36\left(n+\frac{1}{288}\sqrt{3457}-\frac{1}{288}\right)\left(n-\left(\frac{1}{288}\sqrt{3457}+\frac{1}{288}\right)\right)}{n^{2}}
-\frac{1}{288}\sqrt{3457}+\frac{1}{288} ವಿರುದ್ಧವನ್ನು ಹುಡುಕಲು, ಪ್ರತಿ ಪದದ ವಿರುದ್ಧ ಪದವನ್ನು ಹುಡುಕಿ.
\frac{-36\left(n+\frac{1}{288}\sqrt{3457}-\frac{1}{288}\right)\left(n-\frac{1}{288}\sqrt{3457}-\frac{1}{288}\right)}{n^{2}}
\frac{1}{288}\sqrt{3457}+\frac{1}{288} ವಿರುದ್ಧವನ್ನು ಹುಡುಕಲು, ಪ್ರತಿ ಪದದ ವಿರುದ್ಧ ಪದವನ್ನು ಹುಡುಕಿ.
\frac{\left(-36n-\frac{1}{8}\sqrt{3457}+\frac{1}{8}\right)\left(n-\frac{1}{288}\sqrt{3457}-\frac{1}{288}\right)}{n^{2}}
n+\frac{1}{288}\sqrt{3457}-\frac{1}{288} ದಿಂದ -36 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
\frac{-36n^{2}+\frac{1}{4}n+\frac{1}{2304}\left(\sqrt{3457}\right)^{2}-\frac{1}{2304}}{n^{2}}
n-\frac{1}{288}\sqrt{3457}-\frac{1}{288} ರಿಂದು -36n-\frac{1}{8}\sqrt{3457}+\frac{1}{8} ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
\frac{-36n^{2}+\frac{1}{4}n+\frac{1}{2304}\times 3457-\frac{1}{2304}}{n^{2}}
\sqrt{3457} ವರ್ಗವು 3457 ಆಗಿದೆ.
\frac{-36n^{2}+\frac{1}{4}n+\frac{3457}{2304}-\frac{1}{2304}}{n^{2}}
\frac{3457}{2304} ಪಡೆದುಕೊಳ್ಳಲು \frac{1}{2304} ಮತ್ತು 3457 ಗುಣಿಸಿ.
\frac{-36n^{2}+\frac{1}{4}n+\frac{3}{2}}{n^{2}}
\frac{3}{2} ಪಡೆದುಕೊಳ್ಳಲು \frac{3457}{2304} ದಿಂದ \frac{1}{2304} ಕಳೆಯಿರಿ.