x ಪರಿಹರಿಸಿ (ಸಂಕೀರ್ಣ ಪರಿಹಾರ)
x=\sqrt{6}-2\approx 0.449489743
x=-\left(\sqrt{6}+2\right)\approx -4.449489743
x ಪರಿಹರಿಸಿ
x=\sqrt{6}-2\approx 0.449489743
x=-\sqrt{6}-2\approx -4.449489743
ಗ್ರಾಫ್
ರಸಪ್ರಶ್ನೆ
Quadratic Equation
5 ಇದೇ ತರಹದ ಪ್ರಶ್ನೆಗಳು:
\frac { 6 } { x ^ { 2 } } - \frac { 12 } { x } = 3
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
6-x\times 12=3x^{2}
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು x^{2}, x^{2},x ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
6-x\times 12-3x^{2}=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 3x^{2} ಕಳೆಯಿರಿ.
6-12x-3x^{2}=0
-12 ಪಡೆದುಕೊಳ್ಳಲು -1 ಮತ್ತು 12 ಗುಣಿಸಿ.
-3x^{2}-12x+6=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\left(-3\right)\times 6}}{2\left(-3\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -3, b ಗೆ -12 ಮತ್ತು c ಗೆ 6 ಬದಲಿಸಿ.
x=\frac{-\left(-12\right)±\sqrt{144-4\left(-3\right)\times 6}}{2\left(-3\right)}
ವರ್ಗ -12.
x=\frac{-\left(-12\right)±\sqrt{144+12\times 6}}{2\left(-3\right)}
-3 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-12\right)±\sqrt{144+72}}{2\left(-3\right)}
6 ಅನ್ನು 12 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-12\right)±\sqrt{216}}{2\left(-3\right)}
72 ಗೆ 144 ಸೇರಿಸಿ.
x=\frac{-\left(-12\right)±6\sqrt{6}}{2\left(-3\right)}
216 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{12±6\sqrt{6}}{2\left(-3\right)}
-12 ನ ವಿಲೋಮವು 12 ಆಗಿದೆ.
x=\frac{12±6\sqrt{6}}{-6}
-3 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{6\sqrt{6}+12}{-6}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{12±6\sqrt{6}}{-6} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 6\sqrt{6} ಗೆ 12 ಸೇರಿಸಿ.
x=-\left(\sqrt{6}+2\right)
-6 ದಿಂದ 12+6\sqrt{6} ಭಾಗಿಸಿ.
x=\frac{12-6\sqrt{6}}{-6}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{12±6\sqrt{6}}{-6} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 12 ದಿಂದ 6\sqrt{6} ಕಳೆಯಿರಿ.
x=\sqrt{6}-2
-6 ದಿಂದ 12-6\sqrt{6} ಭಾಗಿಸಿ.
x=-\left(\sqrt{6}+2\right) x=\sqrt{6}-2
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
6-x\times 12=3x^{2}
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು x^{2}, x^{2},x ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
6-x\times 12-3x^{2}=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 3x^{2} ಕಳೆಯಿರಿ.
-x\times 12-3x^{2}=-6
ಎರಡೂ ಕಡೆಗಳಿಂದ 6 ಕಳೆಯಿರಿ. ಶೂನ್ಯದಿಂದ ಏನನ್ನಾದರೂ ಕಳೆದರೆ ಅದರ ಋಣಾತ್ಮಕವನ್ನು ನೀಡುತ್ತದೆ.
-12x-3x^{2}=-6
-12 ಪಡೆದುಕೊಳ್ಳಲು -1 ಮತ್ತು 12 ಗುಣಿಸಿ.
-3x^{2}-12x=-6
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್ನಲ್ಲಿ ಇರಬೇಕು.
\frac{-3x^{2}-12x}{-3}=-\frac{6}{-3}
-3 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\left(-\frac{12}{-3}\right)x=-\frac{6}{-3}
-3 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -3 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}+4x=-\frac{6}{-3}
-3 ದಿಂದ -12 ಭಾಗಿಸಿ.
x^{2}+4x=2
-3 ದಿಂದ -6 ಭಾಗಿಸಿ.
x^{2}+4x+2^{2}=2+2^{2}
2 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ 4 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ 2 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+4x+4=2+4
ವರ್ಗ 2.
x^{2}+4x+4=6
4 ಗೆ 2 ಸೇರಿಸಿ.
\left(x+2\right)^{2}=6
ಅಪವರ್ತನ x^{2}+4x+4. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+2\right)^{2}}=\sqrt{6}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+2=\sqrt{6} x+2=-\sqrt{6}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\sqrt{6}-2 x=-\sqrt{6}-2
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 2 ಕಳೆಯಿರಿ.
6-x\times 12=3x^{2}
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು x^{2}, x^{2},x ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
6-x\times 12-3x^{2}=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 3x^{2} ಕಳೆಯಿರಿ.
6-12x-3x^{2}=0
-12 ಪಡೆದುಕೊಳ್ಳಲು -1 ಮತ್ತು 12 ಗುಣಿಸಿ.
-3x^{2}-12x+6=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\left(-3\right)\times 6}}{2\left(-3\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -3, b ಗೆ -12 ಮತ್ತು c ಗೆ 6 ಬದಲಿಸಿ.
x=\frac{-\left(-12\right)±\sqrt{144-4\left(-3\right)\times 6}}{2\left(-3\right)}
ವರ್ಗ -12.
x=\frac{-\left(-12\right)±\sqrt{144+12\times 6}}{2\left(-3\right)}
-3 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-12\right)±\sqrt{144+72}}{2\left(-3\right)}
6 ಅನ್ನು 12 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-12\right)±\sqrt{216}}{2\left(-3\right)}
72 ಗೆ 144 ಸೇರಿಸಿ.
x=\frac{-\left(-12\right)±6\sqrt{6}}{2\left(-3\right)}
216 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{12±6\sqrt{6}}{2\left(-3\right)}
-12 ನ ವಿಲೋಮವು 12 ಆಗಿದೆ.
x=\frac{12±6\sqrt{6}}{-6}
-3 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{6\sqrt{6}+12}{-6}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{12±6\sqrt{6}}{-6} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 6\sqrt{6} ಗೆ 12 ಸೇರಿಸಿ.
x=-\left(\sqrt{6}+2\right)
-6 ದಿಂದ 12+6\sqrt{6} ಭಾಗಿಸಿ.
x=\frac{12-6\sqrt{6}}{-6}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{12±6\sqrt{6}}{-6} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 12 ದಿಂದ 6\sqrt{6} ಕಳೆಯಿರಿ.
x=\sqrt{6}-2
-6 ದಿಂದ 12-6\sqrt{6} ಭಾಗಿಸಿ.
x=-\left(\sqrt{6}+2\right) x=\sqrt{6}-2
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
6-x\times 12=3x^{2}
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು x^{2}, x^{2},x ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
6-x\times 12-3x^{2}=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 3x^{2} ಕಳೆಯಿರಿ.
-x\times 12-3x^{2}=-6
ಎರಡೂ ಕಡೆಗಳಿಂದ 6 ಕಳೆಯಿರಿ. ಶೂನ್ಯದಿಂದ ಏನನ್ನಾದರೂ ಕಳೆದರೆ ಅದರ ಋಣಾತ್ಮಕವನ್ನು ನೀಡುತ್ತದೆ.
-12x-3x^{2}=-6
-12 ಪಡೆದುಕೊಳ್ಳಲು -1 ಮತ್ತು 12 ಗುಣಿಸಿ.
-3x^{2}-12x=-6
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್ನಲ್ಲಿ ಇರಬೇಕು.
\frac{-3x^{2}-12x}{-3}=-\frac{6}{-3}
-3 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\left(-\frac{12}{-3}\right)x=-\frac{6}{-3}
-3 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -3 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}+4x=-\frac{6}{-3}
-3 ದಿಂದ -12 ಭಾಗಿಸಿ.
x^{2}+4x=2
-3 ದಿಂದ -6 ಭಾಗಿಸಿ.
x^{2}+4x+2^{2}=2+2^{2}
2 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ 4 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ 2 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+4x+4=2+4
ವರ್ಗ 2.
x^{2}+4x+4=6
4 ಗೆ 2 ಸೇರಿಸಿ.
\left(x+2\right)^{2}=6
ಅಪವರ್ತನ x^{2}+4x+4. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+2\right)^{2}}=\sqrt{6}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+2=\sqrt{6} x+2=-\sqrt{6}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\sqrt{6}-2 x=-\sqrt{6}-2
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 2 ಕಳೆಯಿರಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}