ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಮೌಲ್ಯಮಾಪನ
Tick mark Image
ನೈಜ ಭಾಗ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

\frac{\left(5+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}
ಛೇದದ ಸಂಕೀರ್ಣ ಸಂಯುಗ್ಮದ ಮೂಲಕ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದ ಎರಡನ್ನೂ ಗುಣಿಸಿ, 1+i.
\frac{\left(5+i\right)\left(1+i\right)}{1^{2}-i^{2}}
ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5+i\right)\left(1+i\right)}{2}
ವ್ಯಾಖ್ಯಾನದ ಮೂಲಕ, i^{2} ಎನ್ನುವುದು -1 ಆಗಿದೆ. ಛೇದವನ್ನು ಲೆಕ್ಕಹಾಕಿ.
\frac{5\times 1+5i+i+i^{2}}{2}
ನೀವು ದ್ವಿಪದಗಳನ್ನು ಗುಣಿಸಿದಂತೆ 5+i ಮತ್ತು 1+i ಸಂಕೀರ್ಣ ಸಂಖ್ಯೆಗಳನ್ನು ಗುಣಿಸಿ.
\frac{5\times 1+5i+i-1}{2}
ವ್ಯಾಖ್ಯಾನದ ಮೂಲಕ, i^{2} ಎನ್ನುವುದು -1 ಆಗಿದೆ.
\frac{5+5i+i-1}{2}
5\times 1+5i+i-1 ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{5-1+\left(5+1\right)i}{2}
5+5i+i-1 ನಲ್ಲಿ ನೈಜ ಮತ್ತು ಕಾಲ್ಪನಿಕ ಭಾಗಗಳನ್ನು ಕೂಡಿಸಿ.
\frac{4+6i}{2}
5-1+\left(5+1\right)i ನಲ್ಲಿ ಸಂಕಲನ ಮಾಡಿ.
2+3i
2+3i ಪಡೆಯಲು 2 ರಿಂದ 4+6i ವಿಭಾಗಿಸಿ.
Re(\frac{\left(5+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)})
\frac{5+i}{1-i} ನ ಗಣಕ ಮತ್ತು ಛೇದವನ್ನು, 1+i ಗಣಕದ ಸಂಕೀರ್ಣ ಸಂಯೋಗದಿಂದ ಗುಣಿಸಿ.
Re(\frac{\left(5+i\right)\left(1+i\right)}{1^{2}-i^{2}})
ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(5+i\right)\left(1+i\right)}{2})
ವ್ಯಾಖ್ಯಾನದ ಮೂಲಕ, i^{2} ಎನ್ನುವುದು -1 ಆಗಿದೆ. ಛೇದವನ್ನು ಲೆಕ್ಕಹಾಕಿ.
Re(\frac{5\times 1+5i+i+i^{2}}{2})
ನೀವು ದ್ವಿಪದಗಳನ್ನು ಗುಣಿಸಿದಂತೆ 5+i ಮತ್ತು 1+i ಸಂಕೀರ್ಣ ಸಂಖ್ಯೆಗಳನ್ನು ಗುಣಿಸಿ.
Re(\frac{5\times 1+5i+i-1}{2})
ವ್ಯಾಖ್ಯಾನದ ಮೂಲಕ, i^{2} ಎನ್ನುವುದು -1 ಆಗಿದೆ.
Re(\frac{5+5i+i-1}{2})
5\times 1+5i+i-1 ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
Re(\frac{5-1+\left(5+1\right)i}{2})
5+5i+i-1 ನಲ್ಲಿ ನೈಜ ಮತ್ತು ಕಾಲ್ಪನಿಕ ಭಾಗಗಳನ್ನು ಕೂಡಿಸಿ.
Re(\frac{4+6i}{2})
5-1+\left(5+1\right)i ನಲ್ಲಿ ಸಂಕಲನ ಮಾಡಿ.
Re(2+3i)
2+3i ಪಡೆಯಲು 2 ರಿಂದ 4+6i ವಿಭಾಗಿಸಿ.
2
2+3i ನ ನೈಜ ಭಾಗವು 2 ಆಗಿದೆ.