ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಮೌಲ್ಯಮಾಪನ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

\frac{\left(5+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}
\frac{5+\sqrt{3}}{2-\sqrt{3}} ಅನ್ನು ಗುಣಿಸುವ ಮೂಲಕ ಛೇದವನ್ನು ಮತ್ತು 2+\sqrt{3} ಮೂಲಕ ಛೇದ ಮತ್ತು ಅಂಶವನ್ನು ತರ್ಕಬದ್ಧವಾಗಿಸಿ.
\frac{\left(5+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{2^{2}-\left(\sqrt{3}\right)^{2}}
\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right) ಪರಿಗಣಿಸಿ. ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{4-3}
ವರ್ಗ 2. ವರ್ಗ \sqrt{3}.
\frac{\left(5+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{1}
1 ಪಡೆದುಕೊಳ್ಳಲು 4 ದಿಂದ 3 ಕಳೆಯಿರಿ.
\left(5+\sqrt{3}\right)\left(2+\sqrt{3}\right)
ಯಾವುದನ್ನಾದರೂ ಒಂದರಿಂದ ಭಾಗಿಸಿದರೆ ಅದನ್ನೇ ನೀಡುತ್ತದೆ.
10+5\sqrt{3}+2\sqrt{3}+\left(\sqrt{3}\right)^{2}
5+\sqrt{3} ನ ಪ್ರತಿ ಪದವನ್ನು 2+\sqrt{3} ನ ಪ್ರತಿ ಪದದೊಂದಿಗೆ ಗುಣಾಕಾರ ಮಾಡುವ ಮೂಲಕ ವಿಭಾಜಕ ಗುಣವನ್ನು ಅನ್ವಯಿಸಿ.
10+7\sqrt{3}+\left(\sqrt{3}\right)^{2}
7\sqrt{3} ಪಡೆದುಕೊಳ್ಳಲು 5\sqrt{3} ಮತ್ತು 2\sqrt{3} ಕೂಡಿಸಿ.
10+7\sqrt{3}+3
\sqrt{3} ವರ್ಗವು 3 ಆಗಿದೆ.
13+7\sqrt{3}
13 ಪಡೆದುಕೊಳ್ಳಲು 10 ಮತ್ತು 3 ಸೇರಿಸಿ.