ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಮೌಲ್ಯಮಾಪನ
Tick mark Image
ನೈಜ ಭಾಗ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

\frac{\left(4-3i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}
ಛೇದದ ಸಂಕೀರ್ಣ ಸಂಯುಗ್ಮದ ಮೂಲಕ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದ ಎರಡನ್ನೂ ಗುಣಿಸಿ, 1+i.
\frac{\left(4-3i\right)\left(1+i\right)}{1^{2}-i^{2}}
ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4-3i\right)\left(1+i\right)}{2}
ವ್ಯಾಖ್ಯಾನದ ಮೂಲಕ, i^{2} ಎನ್ನುವುದು -1 ಆಗಿದೆ. ಛೇದವನ್ನು ಲೆಕ್ಕಹಾಕಿ.
\frac{4\times 1+4i-3i-3i^{2}}{2}
ನೀವು ದ್ವಿಪದಗಳನ್ನು ಗುಣಿಸಿದಂತೆ 4-3i ಮತ್ತು 1+i ಸಂಕೀರ್ಣ ಸಂಖ್ಯೆಗಳನ್ನು ಗುಣಿಸಿ.
\frac{4\times 1+4i-3i-3\left(-1\right)}{2}
ವ್ಯಾಖ್ಯಾನದ ಮೂಲಕ, i^{2} ಎನ್ನುವುದು -1 ಆಗಿದೆ.
\frac{4+4i-3i+3}{2}
4\times 1+4i-3i-3\left(-1\right) ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{4+3+\left(4-3\right)i}{2}
4+4i-3i+3 ನಲ್ಲಿ ನೈಜ ಮತ್ತು ಕಾಲ್ಪನಿಕ ಭಾಗಗಳನ್ನು ಕೂಡಿಸಿ.
\frac{7+i}{2}
4+3+\left(4-3\right)i ನಲ್ಲಿ ಸಂಕಲನ ಮಾಡಿ.
\frac{7}{2}+\frac{1}{2}i
\frac{7}{2}+\frac{1}{2}i ಪಡೆಯಲು 2 ರಿಂದ 7+i ವಿಭಾಗಿಸಿ.
Re(\frac{\left(4-3i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)})
\frac{4-3i}{1-i} ನ ಗಣಕ ಮತ್ತು ಛೇದವನ್ನು, 1+i ಗಣಕದ ಸಂಕೀರ್ಣ ಸಂಯೋಗದಿಂದ ಗುಣಿಸಿ.
Re(\frac{\left(4-3i\right)\left(1+i\right)}{1^{2}-i^{2}})
ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(4-3i\right)\left(1+i\right)}{2})
ವ್ಯಾಖ್ಯಾನದ ಮೂಲಕ, i^{2} ಎನ್ನುವುದು -1 ಆಗಿದೆ. ಛೇದವನ್ನು ಲೆಕ್ಕಹಾಕಿ.
Re(\frac{4\times 1+4i-3i-3i^{2}}{2})
ನೀವು ದ್ವಿಪದಗಳನ್ನು ಗುಣಿಸಿದಂತೆ 4-3i ಮತ್ತು 1+i ಸಂಕೀರ್ಣ ಸಂಖ್ಯೆಗಳನ್ನು ಗುಣಿಸಿ.
Re(\frac{4\times 1+4i-3i-3\left(-1\right)}{2})
ವ್ಯಾಖ್ಯಾನದ ಮೂಲಕ, i^{2} ಎನ್ನುವುದು -1 ಆಗಿದೆ.
Re(\frac{4+4i-3i+3}{2})
4\times 1+4i-3i-3\left(-1\right) ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
Re(\frac{4+3+\left(4-3\right)i}{2})
4+4i-3i+3 ನಲ್ಲಿ ನೈಜ ಮತ್ತು ಕಾಲ್ಪನಿಕ ಭಾಗಗಳನ್ನು ಕೂಡಿಸಿ.
Re(\frac{7+i}{2})
4+3+\left(4-3\right)i ನಲ್ಲಿ ಸಂಕಲನ ಮಾಡಿ.
Re(\frac{7}{2}+\frac{1}{2}i)
\frac{7}{2}+\frac{1}{2}i ಪಡೆಯಲು 2 ರಿಂದ 7+i ವಿಭಾಗಿಸಿ.
\frac{7}{2}
\frac{7}{2}+\frac{1}{2}i ನ ನೈಜ ಭಾಗವು \frac{7}{2} ಆಗಿದೆ.