ಮೌಲ್ಯಮಾಪನ
-\frac{8\sqrt{2}}{7}\approx -1.616244071
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
\frac{\left(4-\sqrt{2}\right)\left(4-\sqrt{2}\right)}{\left(4+\sqrt{2}\right)\left(4-\sqrt{2}\right)}-\frac{4+\sqrt{2}}{4-\sqrt{2}}
\frac{4-\sqrt{2}}{4+\sqrt{2}} ಅನ್ನು ಗುಣಿಸುವ ಮೂಲಕ ಛೇದವನ್ನು ಮತ್ತು 4-\sqrt{2} ಮೂಲಕ ಛೇದ ಮತ್ತು ಅಂಶವನ್ನು ತರ್ಕಬದ್ಧವಾಗಿಸಿ.
\frac{\left(4-\sqrt{2}\right)\left(4-\sqrt{2}\right)}{4^{2}-\left(\sqrt{2}\right)^{2}}-\frac{4+\sqrt{2}}{4-\sqrt{2}}
\left(4+\sqrt{2}\right)\left(4-\sqrt{2}\right) ಪರಿಗಣಿಸಿ. ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4-\sqrt{2}\right)\left(4-\sqrt{2}\right)}{16-2}-\frac{4+\sqrt{2}}{4-\sqrt{2}}
ವರ್ಗ 4. ವರ್ಗ \sqrt{2}.
\frac{\left(4-\sqrt{2}\right)\left(4-\sqrt{2}\right)}{14}-\frac{4+\sqrt{2}}{4-\sqrt{2}}
14 ಪಡೆದುಕೊಳ್ಳಲು 16 ದಿಂದ 2 ಕಳೆಯಿರಿ.
\frac{\left(4-\sqrt{2}\right)^{2}}{14}-\frac{4+\sqrt{2}}{4-\sqrt{2}}
\left(4-\sqrt{2}\right)^{2} ಪಡೆದುಕೊಳ್ಳಲು 4-\sqrt{2} ಮತ್ತು 4-\sqrt{2} ಗುಣಿಸಿ.
\frac{16-8\sqrt{2}+\left(\sqrt{2}\right)^{2}}{14}-\frac{4+\sqrt{2}}{4-\sqrt{2}}
\left(4-\sqrt{2}\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ಬಳಸಿ.
\frac{16-8\sqrt{2}+2}{14}-\frac{4+\sqrt{2}}{4-\sqrt{2}}
\sqrt{2} ವರ್ಗವು 2 ಆಗಿದೆ.
\frac{18-8\sqrt{2}}{14}-\frac{4+\sqrt{2}}{4-\sqrt{2}}
18 ಪಡೆದುಕೊಳ್ಳಲು 16 ಮತ್ತು 2 ಸೇರಿಸಿ.
\frac{18-8\sqrt{2}}{14}-\frac{\left(4+\sqrt{2}\right)\left(4+\sqrt{2}\right)}{\left(4-\sqrt{2}\right)\left(4+\sqrt{2}\right)}
\frac{4+\sqrt{2}}{4-\sqrt{2}} ಅನ್ನು ಗುಣಿಸುವ ಮೂಲಕ ಛೇದವನ್ನು ಮತ್ತು 4+\sqrt{2} ಮೂಲಕ ಛೇದ ಮತ್ತು ಅಂಶವನ್ನು ತರ್ಕಬದ್ಧವಾಗಿಸಿ.
\frac{18-8\sqrt{2}}{14}-\frac{\left(4+\sqrt{2}\right)\left(4+\sqrt{2}\right)}{4^{2}-\left(\sqrt{2}\right)^{2}}
\left(4-\sqrt{2}\right)\left(4+\sqrt{2}\right) ಪರಿಗಣಿಸಿ. ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{18-8\sqrt{2}}{14}-\frac{\left(4+\sqrt{2}\right)\left(4+\sqrt{2}\right)}{16-2}
ವರ್ಗ 4. ವರ್ಗ \sqrt{2}.
\frac{18-8\sqrt{2}}{14}-\frac{\left(4+\sqrt{2}\right)\left(4+\sqrt{2}\right)}{14}
14 ಪಡೆದುಕೊಳ್ಳಲು 16 ದಿಂದ 2 ಕಳೆಯಿರಿ.
\frac{18-8\sqrt{2}}{14}-\frac{\left(4+\sqrt{2}\right)^{2}}{14}
\left(4+\sqrt{2}\right)^{2} ಪಡೆದುಕೊಳ್ಳಲು 4+\sqrt{2} ಮತ್ತು 4+\sqrt{2} ಗುಣಿಸಿ.
\frac{18-8\sqrt{2}}{14}-\frac{16+8\sqrt{2}+\left(\sqrt{2}\right)^{2}}{14}
\left(4+\sqrt{2}\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ಬಳಸಿ.
\frac{18-8\sqrt{2}}{14}-\frac{16+8\sqrt{2}+2}{14}
\sqrt{2} ವರ್ಗವು 2 ಆಗಿದೆ.
\frac{18-8\sqrt{2}}{14}-\frac{18+8\sqrt{2}}{14}
18 ಪಡೆದುಕೊಳ್ಳಲು 16 ಮತ್ತು 2 ಸೇರಿಸಿ.
\frac{18-8\sqrt{2}-\left(18+8\sqrt{2}\right)}{14}
\frac{18-8\sqrt{2}}{14} ಮತ್ತು \frac{18+8\sqrt{2}}{14} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಕಳೆಯಿರಿ.
\frac{18-8\sqrt{2}-18-8\sqrt{2}}{14}
18-8\sqrt{2}-\left(18+8\sqrt{2}\right) ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{-16\sqrt{2}}{14}
18-8\sqrt{2}-18-8\sqrt{2} ನಲ್ಲಿ ಲೆಕ್ಕಾಚಾರಗಳನ್ನು ಮಾಡಿ.
-\frac{8}{7}\sqrt{2}
-\frac{8}{7}\sqrt{2} ಪಡೆಯಲು 14 ರಿಂದ -16\sqrt{2} ವಿಭಾಗಿಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}