ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

\left(2x-1\right)\times 4+\left(x+3\right)\times 3=\left(2x-1\right)\left(x+3\right)
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ ಯಾವುದೇ -3,\frac{1}{2} ಮೌಲ್ಯಗಳಿಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು \left(2x-1\right)\left(x+3\right), x+3,2x-1 ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
8x-4+\left(x+3\right)\times 3=\left(2x-1\right)\left(x+3\right)
4 ದಿಂದ 2x-1 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
8x-4+3x+9=\left(2x-1\right)\left(x+3\right)
3 ದಿಂದ x+3 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
11x-4+9=\left(2x-1\right)\left(x+3\right)
11x ಪಡೆದುಕೊಳ್ಳಲು 8x ಮತ್ತು 3x ಕೂಡಿಸಿ.
11x+5=\left(2x-1\right)\left(x+3\right)
5 ಪಡೆದುಕೊಳ್ಳಲು -4 ಮತ್ತು 9 ಸೇರಿಸಿ.
11x+5=2x^{2}+5x-3
x+3 ರಿಂದು 2x-1 ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
11x+5-2x^{2}=5x-3
ಎರಡೂ ಕಡೆಗಳಿಂದ 2x^{2} ಕಳೆಯಿರಿ.
11x+5-2x^{2}-5x=-3
ಎರಡೂ ಕಡೆಗಳಿಂದ 5x ಕಳೆಯಿರಿ.
6x+5-2x^{2}=-3
6x ಪಡೆದುಕೊಳ್ಳಲು 11x ಮತ್ತು -5x ಕೂಡಿಸಿ.
6x+5-2x^{2}+3=0
ಎರಡೂ ಬದಿಗಳಿಗೆ 3 ಸೇರಿಸಿ.
6x+8-2x^{2}=0
8 ಪಡೆದುಕೊಳ್ಳಲು 5 ಮತ್ತು 3 ಸೇರಿಸಿ.
-2x^{2}+6x+8=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-6±\sqrt{6^{2}-4\left(-2\right)\times 8}}{2\left(-2\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -2, b ಗೆ 6 ಮತ್ತು c ಗೆ 8 ಬದಲಿಸಿ.
x=\frac{-6±\sqrt{36-4\left(-2\right)\times 8}}{2\left(-2\right)}
ವರ್ಗ 6.
x=\frac{-6±\sqrt{36+8\times 8}}{2\left(-2\right)}
-2 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-6±\sqrt{36+64}}{2\left(-2\right)}
8 ಅನ್ನು 8 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-6±\sqrt{100}}{2\left(-2\right)}
64 ಗೆ 36 ಸೇರಿಸಿ.
x=\frac{-6±10}{2\left(-2\right)}
100 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{-6±10}{-4}
-2 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{4}{-4}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-6±10}{-4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 10 ಗೆ -6 ಸೇರಿಸಿ.
x=-1
-4 ದಿಂದ 4 ಭಾಗಿಸಿ.
x=-\frac{16}{-4}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-6±10}{-4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -6 ದಿಂದ 10 ಕಳೆಯಿರಿ.
x=4
-4 ದಿಂದ -16 ಭಾಗಿಸಿ.
x=-1 x=4
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
\left(2x-1\right)\times 4+\left(x+3\right)\times 3=\left(2x-1\right)\left(x+3\right)
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ ಯಾವುದೇ -3,\frac{1}{2} ಮೌಲ್ಯಗಳಿಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು \left(2x-1\right)\left(x+3\right), x+3,2x-1 ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
8x-4+\left(x+3\right)\times 3=\left(2x-1\right)\left(x+3\right)
4 ದಿಂದ 2x-1 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
8x-4+3x+9=\left(2x-1\right)\left(x+3\right)
3 ದಿಂದ x+3 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
11x-4+9=\left(2x-1\right)\left(x+3\right)
11x ಪಡೆದುಕೊಳ್ಳಲು 8x ಮತ್ತು 3x ಕೂಡಿಸಿ.
11x+5=\left(2x-1\right)\left(x+3\right)
5 ಪಡೆದುಕೊಳ್ಳಲು -4 ಮತ್ತು 9 ಸೇರಿಸಿ.
11x+5=2x^{2}+5x-3
x+3 ರಿಂದು 2x-1 ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
11x+5-2x^{2}=5x-3
ಎರಡೂ ಕಡೆಗಳಿಂದ 2x^{2} ಕಳೆಯಿರಿ.
11x+5-2x^{2}-5x=-3
ಎರಡೂ ಕಡೆಗಳಿಂದ 5x ಕಳೆಯಿರಿ.
6x+5-2x^{2}=-3
6x ಪಡೆದುಕೊಳ್ಳಲು 11x ಮತ್ತು -5x ಕೂಡಿಸಿ.
6x-2x^{2}=-3-5
ಎರಡೂ ಕಡೆಗಳಿಂದ 5 ಕಳೆಯಿರಿ.
6x-2x^{2}=-8
-8 ಪಡೆದುಕೊಳ್ಳಲು -3 ದಿಂದ 5 ಕಳೆಯಿರಿ.
-2x^{2}+6x=-8
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
\frac{-2x^{2}+6x}{-2}=-\frac{8}{-2}
-2 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\frac{6}{-2}x=-\frac{8}{-2}
-2 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -2 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-3x=-\frac{8}{-2}
-2 ದಿಂದ 6 ಭಾಗಿಸಿ.
x^{2}-3x=4
-2 ದಿಂದ -8 ಭಾಗಿಸಿ.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=4+\left(-\frac{3}{2}\right)^{2}
-\frac{3}{2} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -3 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{3}{2} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-3x+\frac{9}{4}=4+\frac{9}{4}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{3}{2} ವರ್ಗಗೊಳಿಸಿ.
x^{2}-3x+\frac{9}{4}=\frac{25}{4}
\frac{9}{4} ಗೆ 4 ಸೇರಿಸಿ.
\left(x-\frac{3}{2}\right)^{2}=\frac{25}{4}
ಅಪವರ್ತನ x^{2}-3x+\frac{9}{4}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-\frac{3}{2}=\frac{5}{2} x-\frac{3}{2}=-\frac{5}{2}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=4 x=-1
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{3}{2} ಸೇರಿಸಿ.