ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಮೌಲ್ಯಮಾಪನ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

\frac{4\left(2\sqrt{3}+3\right)}{\left(2\sqrt{3}-3\right)\left(2\sqrt{3}+3\right)}
\frac{4}{2\sqrt{3}-3} ಅನ್ನು ಗುಣಿಸುವ ಮೂಲಕ ಛೇದವನ್ನು ಮತ್ತು 2\sqrt{3}+3 ಮೂಲಕ ಛೇದ ಮತ್ತು ಅಂಶವನ್ನು ತರ್ಕಬದ್ಧವಾಗಿಸಿ.
\frac{4\left(2\sqrt{3}+3\right)}{\left(2\sqrt{3}\right)^{2}-3^{2}}
\left(2\sqrt{3}-3\right)\left(2\sqrt{3}+3\right) ಪರಿಗಣಿಸಿ. ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\left(2\sqrt{3}+3\right)}{2^{2}\left(\sqrt{3}\right)^{2}-3^{2}}
\left(2\sqrt{3}\right)^{2} ವಿಸ್ತರಿಸಿ.
\frac{4\left(2\sqrt{3}+3\right)}{4\left(\sqrt{3}\right)^{2}-3^{2}}
2 ನ ಘಾತಕ್ಕೆ 2 ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 4 ಪಡೆಯಿರಿ.
\frac{4\left(2\sqrt{3}+3\right)}{4\times 3-3^{2}}
\sqrt{3} ವರ್ಗವು 3 ಆಗಿದೆ.
\frac{4\left(2\sqrt{3}+3\right)}{12-3^{2}}
12 ಪಡೆದುಕೊಳ್ಳಲು 4 ಮತ್ತು 3 ಗುಣಿಸಿ.
\frac{4\left(2\sqrt{3}+3\right)}{12-9}
2 ನ ಘಾತಕ್ಕೆ 3 ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 9 ಪಡೆಯಿರಿ.
\frac{4\left(2\sqrt{3}+3\right)}{3}
3 ಪಡೆದುಕೊಳ್ಳಲು 12 ದಿಂದ 9 ಕಳೆಯಿರಿ.
\frac{8\sqrt{3}+12}{3}
2\sqrt{3}+3 ದಿಂದ 4 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.