ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಮೌಲ್ಯಮಾಪನ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{\left(2-\sqrt{2}\right)\left(2+\sqrt{2}\right)}-\frac{30}{4\sqrt{3}-\sqrt{18}}-\frac{\sqrt{18}}{3-\sqrt{12}}
\frac{4\sqrt{3}}{2-\sqrt{2}} ಅನ್ನು ಗುಣಿಸುವ ಮೂಲಕ ಛೇದವನ್ನು ಮತ್ತು 2+\sqrt{2} ಮೂಲಕ ಛೇದ ಮತ್ತು ಅಂಶವನ್ನು ತರ್ಕಬದ್ಧವಾಗಿಸಿ.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2^{2}-\left(\sqrt{2}\right)^{2}}-\frac{30}{4\sqrt{3}-\sqrt{18}}-\frac{\sqrt{18}}{3-\sqrt{12}}
\left(2-\sqrt{2}\right)\left(2+\sqrt{2}\right) ಪರಿಗಣಿಸಿ. ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{4-2}-\frac{30}{4\sqrt{3}-\sqrt{18}}-\frac{\sqrt{18}}{3-\sqrt{12}}
ವರ್ಗ 2. ವರ್ಗ \sqrt{2}.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30}{4\sqrt{3}-\sqrt{18}}-\frac{\sqrt{18}}{3-\sqrt{12}}
2 ಪಡೆದುಕೊಳ್ಳಲು 4 ದಿಂದ 2 ಕಳೆಯಿರಿ.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30}{4\sqrt{3}-3\sqrt{2}}-\frac{\sqrt{18}}{3-\sqrt{12}}
ಅಪವರ್ತನ 18=3^{2}\times 2. ವರ್ಗಮೂಲಗಳ \sqrt{3^{2}}\sqrt{2} ಉತ್ಪನ್ನವಾಗಿ \sqrt{3^{2}\times 2} ಉತ್ಪನ್ನದ ವರ್ಗಮೂಲವನ್ನು ಪುನಃ ಬರೆಯಿರಿ. 3^{2} ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{\left(4\sqrt{3}-3\sqrt{2}\right)\left(4\sqrt{3}+3\sqrt{2}\right)}-\frac{\sqrt{18}}{3-\sqrt{12}}
\frac{30}{4\sqrt{3}-3\sqrt{2}} ಅನ್ನು ಗುಣಿಸುವ ಮೂಲಕ ಛೇದವನ್ನು ಮತ್ತು 4\sqrt{3}+3\sqrt{2} ಮೂಲಕ ಛೇದ ಮತ್ತು ಅಂಶವನ್ನು ತರ್ಕಬದ್ಧವಾಗಿಸಿ.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{\left(4\sqrt{3}\right)^{2}-\left(-3\sqrt{2}\right)^{2}}-\frac{\sqrt{18}}{3-\sqrt{12}}
\left(4\sqrt{3}-3\sqrt{2}\right)\left(4\sqrt{3}+3\sqrt{2}\right) ಪರಿಗಣಿಸಿ. ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{4^{2}\left(\sqrt{3}\right)^{2}-\left(-3\sqrt{2}\right)^{2}}-\frac{\sqrt{18}}{3-\sqrt{12}}
\left(4\sqrt{3}\right)^{2} ವಿಸ್ತರಿಸಿ.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{16\left(\sqrt{3}\right)^{2}-\left(-3\sqrt{2}\right)^{2}}-\frac{\sqrt{18}}{3-\sqrt{12}}
2 ನ ಘಾತಕ್ಕೆ 4 ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 16 ಪಡೆಯಿರಿ.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{16\times 3-\left(-3\sqrt{2}\right)^{2}}-\frac{\sqrt{18}}{3-\sqrt{12}}
\sqrt{3} ವರ್ಗವು 3 ಆಗಿದೆ.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{48-\left(-3\sqrt{2}\right)^{2}}-\frac{\sqrt{18}}{3-\sqrt{12}}
48 ಪಡೆದುಕೊಳ್ಳಲು 16 ಮತ್ತು 3 ಗುಣಿಸಿ.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{48-\left(-3\right)^{2}\left(\sqrt{2}\right)^{2}}-\frac{\sqrt{18}}{3-\sqrt{12}}
\left(-3\sqrt{2}\right)^{2} ವಿಸ್ತರಿಸಿ.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{48-9\left(\sqrt{2}\right)^{2}}-\frac{\sqrt{18}}{3-\sqrt{12}}
2 ನ ಘಾತಕ್ಕೆ -3 ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 9 ಪಡೆಯಿರಿ.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{48-9\times 2}-\frac{\sqrt{18}}{3-\sqrt{12}}
\sqrt{2} ವರ್ಗವು 2 ಆಗಿದೆ.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{48-18}-\frac{\sqrt{18}}{3-\sqrt{12}}
18 ಪಡೆದುಕೊಳ್ಳಲು 9 ಮತ್ತು 2 ಗುಣಿಸಿ.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{30}-\frac{\sqrt{18}}{3-\sqrt{12}}
30 ಪಡೆದುಕೊಳ್ಳಲು 48 ದಿಂದ 18 ಕಳೆಯಿರಿ.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\left(4\sqrt{3}+3\sqrt{2}\right)-\frac{\sqrt{18}}{3-\sqrt{12}}
30 ಮತ್ತು 30 ರದ್ದುಗೊಳಿಸಿ.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{\sqrt{18}}{3-\sqrt{12}}
4\sqrt{3}+3\sqrt{2} ವಿರುದ್ಧವನ್ನು ಹುಡುಕಲು, ಪ್ರತಿ ಪದದ ವಿರುದ್ಧ ಪದವನ್ನು ಹುಡುಕಿ.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}}{3-\sqrt{12}}
ಅಪವರ್ತನ 18=3^{2}\times 2. ವರ್ಗಮೂಲಗಳ \sqrt{3^{2}}\sqrt{2} ಉತ್ಪನ್ನವಾಗಿ \sqrt{3^{2}\times 2} ಉತ್ಪನ್ನದ ವರ್ಗಮೂಲವನ್ನು ಪುನಃ ಬರೆಯಿರಿ. 3^{2} ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}}{3-2\sqrt{3}}
ಅಪವರ್ತನ 12=2^{2}\times 3. ವರ್ಗಮೂಲಗಳ \sqrt{2^{2}}\sqrt{3} ಉತ್ಪನ್ನವಾಗಿ \sqrt{2^{2}\times 3} ಉತ್ಪನ್ನದ ವರ್ಗಮೂಲವನ್ನು ಪುನಃ ಬರೆಯಿರಿ. 2^{2} ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}\left(3+2\sqrt{3}\right)}{\left(3-2\sqrt{3}\right)\left(3+2\sqrt{3}\right)}
\frac{3\sqrt{2}}{3-2\sqrt{3}} ಅನ್ನು ಗುಣಿಸುವ ಮೂಲಕ ಛೇದವನ್ನು ಮತ್ತು 3+2\sqrt{3} ಮೂಲಕ ಛೇದ ಮತ್ತು ಅಂಶವನ್ನು ತರ್ಕಬದ್ಧವಾಗಿಸಿ.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}\left(3+2\sqrt{3}\right)}{3^{2}-\left(-2\sqrt{3}\right)^{2}}
\left(3-2\sqrt{3}\right)\left(3+2\sqrt{3}\right) ಪರಿಗಣಿಸಿ. ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}\left(3+2\sqrt{3}\right)}{9-\left(-2\sqrt{3}\right)^{2}}
2 ನ ಘಾತಕ್ಕೆ 3 ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 9 ಪಡೆಯಿರಿ.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}\left(3+2\sqrt{3}\right)}{9-\left(-2\right)^{2}\left(\sqrt{3}\right)^{2}}
\left(-2\sqrt{3}\right)^{2} ವಿಸ್ತರಿಸಿ.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}\left(3+2\sqrt{3}\right)}{9-4\left(\sqrt{3}\right)^{2}}
2 ನ ಘಾತಕ್ಕೆ -2 ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 4 ಪಡೆಯಿರಿ.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}\left(3+2\sqrt{3}\right)}{9-4\times 3}
\sqrt{3} ವರ್ಗವು 3 ಆಗಿದೆ.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}\left(3+2\sqrt{3}\right)}{9-12}
12 ಪಡೆದುಕೊಳ್ಳಲು 4 ಮತ್ತು 3 ಗುಣಿಸಿ.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}\left(3+2\sqrt{3}\right)}{-3}
-3 ಪಡೆದುಕೊಳ್ಳಲು 9 ದಿಂದ 12 ಕಳೆಯಿರಿ.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\left(-\sqrt{2}\left(3+2\sqrt{3}\right)\right)
-3 ಮತ್ತು -3 ರದ್ದುಗೊಳಿಸಿ.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}+\sqrt{2}\left(3+2\sqrt{3}\right)
-\sqrt{2}\left(3+2\sqrt{3}\right) ನ ವಿಲೋಮವು \sqrt{2}\left(3+2\sqrt{3}\right) ಆಗಿದೆ.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}+\frac{2\left(-4\sqrt{3}-3\sqrt{2}\right)}{2}+\sqrt{2}\left(3+2\sqrt{3}\right)
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. \frac{2}{2} ಅನ್ನು -4\sqrt{3}-3\sqrt{2} ಬಾರಿ ಗುಣಿಸಿ.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)+2\left(-4\sqrt{3}-3\sqrt{2}\right)}{2}+\sqrt{2}\left(3+2\sqrt{3}\right)
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2} ಮತ್ತು \frac{2\left(-4\sqrt{3}-3\sqrt{2}\right)}{2} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಸೇರಿಸಿ.
\frac{8\sqrt{3}+4\sqrt{6}-8\sqrt{3}-6\sqrt{2}}{2}+\sqrt{2}\left(3+2\sqrt{3}\right)
4\sqrt{3}\left(2+\sqrt{2}\right)+2\left(-4\sqrt{3}-3\sqrt{2}\right) ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{4\sqrt{6}-6\sqrt{2}}{2}+\sqrt{2}\left(3+2\sqrt{3}\right)
8\sqrt{3}+4\sqrt{6}-8\sqrt{3}-6\sqrt{2} ನಲ್ಲಿ ಲೆಕ್ಕಾಚಾರಗಳನ್ನು ಮಾಡಿ.
2\sqrt{6}-3\sqrt{2}+\sqrt{2}\left(3+2\sqrt{3}\right)
2\sqrt{6}-3\sqrt{2} ಪಡೆಯಲು 4\sqrt{6}-6\sqrt{2} ನ ಪ್ರತಿ ಪದವನ್ನು 2 ರಿಂದ ಭಾಗಿಸಿ.
2\sqrt{6}-3\sqrt{2}+3\sqrt{2}+2\sqrt{2}\sqrt{3}
3+2\sqrt{3} ದಿಂದ \sqrt{2} ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
2\sqrt{6}-3\sqrt{2}+3\sqrt{2}+2\sqrt{6}
\sqrt{2} ಮತ್ತು \sqrt{3} ಅನ್ನು ಗುಣಿಸಲು, ವರ್ಗಮೂಲದ ಅಡಿಯಲ್ಲಿರುವ ಸಂಖ್ಯೆಯನ್ನು ಗುಣಿಸಿ.
2\sqrt{6}+2\sqrt{6}
0 ಪಡೆದುಕೊಳ್ಳಲು -3\sqrt{2} ಮತ್ತು 3\sqrt{2} ಕೂಡಿಸಿ.
4\sqrt{6}
4\sqrt{6} ಪಡೆದುಕೊಳ್ಳಲು 2\sqrt{6} ಮತ್ತು 2\sqrt{6} ಕೂಡಿಸಿ.