x ಪರಿಹರಿಸಿ
x = -\frac{4}{3} = -1\frac{1}{3} \approx -1.333333333
x=3
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
3x\left(x-1\right)=2x+12
2 ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
3x^{2}-3x=2x+12
x-1 ದಿಂದ 3x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
3x^{2}-3x-2x=12
ಎರಡೂ ಕಡೆಗಳಿಂದ 2x ಕಳೆಯಿರಿ.
3x^{2}-5x=12
-5x ಪಡೆದುಕೊಳ್ಳಲು -3x ಮತ್ತು -2x ಕೂಡಿಸಿ.
3x^{2}-5x-12=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 12 ಕಳೆಯಿರಿ.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 3\left(-12\right)}}{2\times 3}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 3, b ಗೆ -5 ಮತ್ತು c ಗೆ -12 ಬದಲಿಸಿ.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 3\left(-12\right)}}{2\times 3}
ವರ್ಗ -5.
x=\frac{-\left(-5\right)±\sqrt{25-12\left(-12\right)}}{2\times 3}
3 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-5\right)±\sqrt{25+144}}{2\times 3}
-12 ಅನ್ನು -12 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-5\right)±\sqrt{169}}{2\times 3}
144 ಗೆ 25 ಸೇರಿಸಿ.
x=\frac{-\left(-5\right)±13}{2\times 3}
169 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{5±13}{2\times 3}
-5 ನ ವಿಲೋಮವು 5 ಆಗಿದೆ.
x=\frac{5±13}{6}
3 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{18}{6}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{5±13}{6} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 13 ಗೆ 5 ಸೇರಿಸಿ.
x=3
6 ದಿಂದ 18 ಭಾಗಿಸಿ.
x=-\frac{8}{6}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{5±13}{6} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 5 ದಿಂದ 13 ಕಳೆಯಿರಿ.
x=-\frac{4}{3}
2 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{-8}{6} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x=3 x=-\frac{4}{3}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
3x\left(x-1\right)=2x+12
2 ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
3x^{2}-3x=2x+12
x-1 ದಿಂದ 3x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
3x^{2}-3x-2x=12
ಎರಡೂ ಕಡೆಗಳಿಂದ 2x ಕಳೆಯಿರಿ.
3x^{2}-5x=12
-5x ಪಡೆದುಕೊಳ್ಳಲು -3x ಮತ್ತು -2x ಕೂಡಿಸಿ.
\frac{3x^{2}-5x}{3}=\frac{12}{3}
3 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}-\frac{5}{3}x=\frac{12}{3}
3 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 3 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-\frac{5}{3}x=4
3 ದಿಂದ 12 ಭಾಗಿಸಿ.
x^{2}-\frac{5}{3}x+\left(-\frac{5}{6}\right)^{2}=4+\left(-\frac{5}{6}\right)^{2}
-\frac{5}{6} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -\frac{5}{3} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{5}{6} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-\frac{5}{3}x+\frac{25}{36}=4+\frac{25}{36}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{5}{6} ವರ್ಗಗೊಳಿಸಿ.
x^{2}-\frac{5}{3}x+\frac{25}{36}=\frac{169}{36}
\frac{25}{36} ಗೆ 4 ಸೇರಿಸಿ.
\left(x-\frac{5}{6}\right)^{2}=\frac{169}{36}
ಅಪವರ್ತನ x^{2}-\frac{5}{3}x+\frac{25}{36}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-\frac{5}{6}\right)^{2}}=\sqrt{\frac{169}{36}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-\frac{5}{6}=\frac{13}{6} x-\frac{5}{6}=-\frac{13}{6}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=3 x=-\frac{4}{3}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{5}{6} ಸೇರಿಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}