x ಪರಿಹರಿಸಿ (ಸಂಕೀರ್ಣ ಪರಿಹಾರ)
x=\frac{35+\sqrt{4535}i}{48}\approx 0.729166667+1.402966846i
x=\frac{-\sqrt{4535}i+35}{48}\approx 0.729166667-1.402966846i
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
12\left(3x+10\right)-2\left(\frac{9x-4}{3}-3\left(\frac{x}{2}+\frac{7x-6}{4}\right)\right)\times 12x=6x\left(7x+5\right)
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು 12x, x,3,2,4 ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
36x+120-2\left(\frac{9x-4}{3}-3\left(\frac{x}{2}+\frac{7x-6}{4}\right)\right)\times 12x=6x\left(7x+5\right)
3x+10 ದಿಂದ 12 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
36x+120-2\left(\frac{9x-4}{3}-3\left(\frac{2x}{4}+\frac{7x-6}{4}\right)\right)\times 12x=6x\left(7x+5\right)
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. 2 ಮತ್ತು 4 ಇವುಗಳ ಕನಿಷ್ಠ ಅಪವರ್ತ್ಯವು 4 ಆಗಿದೆ. \frac{2}{2} ಅನ್ನು \frac{x}{2} ಬಾರಿ ಗುಣಿಸಿ.
36x+120-2\left(\frac{9x-4}{3}-3\times \frac{2x+7x-6}{4}\right)\times 12x=6x\left(7x+5\right)
\frac{2x}{4} ಮತ್ತು \frac{7x-6}{4} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಸೇರಿಸಿ.
36x+120-2\left(\frac{9x-4}{3}-3\times \frac{9x-6}{4}\right)\times 12x=6x\left(7x+5\right)
2x+7x-6 ನಲ್ಲಿ ಅಂಶಗಳಂತೆ ಕೂಡಿಸಿ.
36x+120-2\left(\frac{9x-4}{3}-\frac{3\left(9x-6\right)}{4}\right)\times 12x=6x\left(7x+5\right)
ಏಕ ಭಿನ್ನಾಂಶವಾಗಿ 3\times \frac{9x-6}{4} ಅನ್ನು ವ್ಯಕ್ತಪಡಿಸಿ.
36x+120-2\left(\frac{9x-4}{3}-\frac{27x-18}{4}\right)\times 12x=6x\left(7x+5\right)
9x-6 ದಿಂದ 3 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
36x+120-2\left(\frac{4\left(9x-4\right)}{12}-\frac{3\left(27x-18\right)}{12}\right)\times 12x=6x\left(7x+5\right)
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. 3 ಮತ್ತು 4 ಇವುಗಳ ಕನಿಷ್ಠ ಅಪವರ್ತ್ಯವು 12 ಆಗಿದೆ. \frac{4}{4} ಅನ್ನು \frac{9x-4}{3} ಬಾರಿ ಗುಣಿಸಿ. \frac{3}{3} ಅನ್ನು \frac{27x-18}{4} ಬಾರಿ ಗುಣಿಸಿ.
36x+120-2\times \frac{4\left(9x-4\right)-3\left(27x-18\right)}{12}\times 12x=6x\left(7x+5\right)
\frac{4\left(9x-4\right)}{12} ಮತ್ತು \frac{3\left(27x-18\right)}{12} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಕಳೆಯಿರಿ.
36x+120-2\times \frac{36x-16-81x+54}{12}\times 12x=6x\left(7x+5\right)
4\left(9x-4\right)-3\left(27x-18\right) ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
36x+120-2\times \frac{-45x+38}{12}\times 12x=6x\left(7x+5\right)
36x-16-81x+54 ನಲ್ಲಿ ಅಂಶಗಳಂತೆ ಕೂಡಿಸಿ.
36x+120-24\times \frac{-45x+38}{12}x=6x\left(7x+5\right)
24 ಪಡೆದುಕೊಳ್ಳಲು 2 ಮತ್ತು 12 ಗುಣಿಸಿ.
36x+120-2\left(-45x+38\right)x=6x\left(7x+5\right)
24 ಮತ್ತು 12 ನಲ್ಲಿ ಅತ್ಯುತ್ತಮ ಸಾಮಾನ್ಯ ಅಂಶ 12 ಅನ್ನು ರದ್ದುಗೊಳಿಸಿ.
36x+120-2\left(-45x+38\right)x=42x^{2}+30x
7x+5 ದಿಂದ 6x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
36x+120-2\left(-45x+38\right)x-42x^{2}=30x
ಎರಡೂ ಕಡೆಗಳಿಂದ 42x^{2} ಕಳೆಯಿರಿ.
36x+120-2\left(-45x+38\right)x-42x^{2}-30x=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 30x ಕಳೆಯಿರಿ.
36x+120+\left(90x-76\right)x-42x^{2}-30x=0
-45x+38 ದಿಂದ -2 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
36x+120+90x^{2}-76x-42x^{2}-30x=0
x ದಿಂದ 90x-76 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
-40x+120+90x^{2}-42x^{2}-30x=0
-40x ಪಡೆದುಕೊಳ್ಳಲು 36x ಮತ್ತು -76x ಕೂಡಿಸಿ.
-40x+120+48x^{2}-30x=0
48x^{2} ಪಡೆದುಕೊಳ್ಳಲು 90x^{2} ಮತ್ತು -42x^{2} ಕೂಡಿಸಿ.
-70x+120+48x^{2}=0
-70x ಪಡೆದುಕೊಳ್ಳಲು -40x ಮತ್ತು -30x ಕೂಡಿಸಿ.
48x^{2}-70x+120=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-\left(-70\right)±\sqrt{\left(-70\right)^{2}-4\times 48\times 120}}{2\times 48}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 48, b ಗೆ -70 ಮತ್ತು c ಗೆ 120 ಬದಲಿಸಿ.
x=\frac{-\left(-70\right)±\sqrt{4900-4\times 48\times 120}}{2\times 48}
ವರ್ಗ -70.
x=\frac{-\left(-70\right)±\sqrt{4900-192\times 120}}{2\times 48}
48 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-70\right)±\sqrt{4900-23040}}{2\times 48}
120 ಅನ್ನು -192 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-70\right)±\sqrt{-18140}}{2\times 48}
-23040 ಗೆ 4900 ಸೇರಿಸಿ.
x=\frac{-\left(-70\right)±2\sqrt{4535}i}{2\times 48}
-18140 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{70±2\sqrt{4535}i}{2\times 48}
-70 ನ ವಿಲೋಮವು 70 ಆಗಿದೆ.
x=\frac{70±2\sqrt{4535}i}{96}
48 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{70+2\sqrt{4535}i}{96}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{70±2\sqrt{4535}i}{96} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2i\sqrt{4535} ಗೆ 70 ಸೇರಿಸಿ.
x=\frac{35+\sqrt{4535}i}{48}
96 ದಿಂದ 70+2i\sqrt{4535} ಭಾಗಿಸಿ.
x=\frac{-2\sqrt{4535}i+70}{96}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{70±2\sqrt{4535}i}{96} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 70 ದಿಂದ 2i\sqrt{4535} ಕಳೆಯಿರಿ.
x=\frac{-\sqrt{4535}i+35}{48}
96 ದಿಂದ 70-2i\sqrt{4535} ಭಾಗಿಸಿ.
x=\frac{35+\sqrt{4535}i}{48} x=\frac{-\sqrt{4535}i+35}{48}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
12\left(3x+10\right)-2\left(\frac{9x-4}{3}-3\left(\frac{x}{2}+\frac{7x-6}{4}\right)\right)\times 12x=6x\left(7x+5\right)
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು 12x, x,3,2,4 ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
36x+120-2\left(\frac{9x-4}{3}-3\left(\frac{x}{2}+\frac{7x-6}{4}\right)\right)\times 12x=6x\left(7x+5\right)
3x+10 ದಿಂದ 12 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
36x+120-2\left(\frac{9x-4}{3}-3\left(\frac{2x}{4}+\frac{7x-6}{4}\right)\right)\times 12x=6x\left(7x+5\right)
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. 2 ಮತ್ತು 4 ಇವುಗಳ ಕನಿಷ್ಠ ಅಪವರ್ತ್ಯವು 4 ಆಗಿದೆ. \frac{2}{2} ಅನ್ನು \frac{x}{2} ಬಾರಿ ಗುಣಿಸಿ.
36x+120-2\left(\frac{9x-4}{3}-3\times \frac{2x+7x-6}{4}\right)\times 12x=6x\left(7x+5\right)
\frac{2x}{4} ಮತ್ತು \frac{7x-6}{4} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಸೇರಿಸಿ.
36x+120-2\left(\frac{9x-4}{3}-3\times \frac{9x-6}{4}\right)\times 12x=6x\left(7x+5\right)
2x+7x-6 ನಲ್ಲಿ ಅಂಶಗಳಂತೆ ಕೂಡಿಸಿ.
36x+120-2\left(\frac{9x-4}{3}-\frac{3\left(9x-6\right)}{4}\right)\times 12x=6x\left(7x+5\right)
ಏಕ ಭಿನ್ನಾಂಶವಾಗಿ 3\times \frac{9x-6}{4} ಅನ್ನು ವ್ಯಕ್ತಪಡಿಸಿ.
36x+120-2\left(\frac{9x-4}{3}-\frac{27x-18}{4}\right)\times 12x=6x\left(7x+5\right)
9x-6 ದಿಂದ 3 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
36x+120-2\left(\frac{4\left(9x-4\right)}{12}-\frac{3\left(27x-18\right)}{12}\right)\times 12x=6x\left(7x+5\right)
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. 3 ಮತ್ತು 4 ಇವುಗಳ ಕನಿಷ್ಠ ಅಪವರ್ತ್ಯವು 12 ಆಗಿದೆ. \frac{4}{4} ಅನ್ನು \frac{9x-4}{3} ಬಾರಿ ಗುಣಿಸಿ. \frac{3}{3} ಅನ್ನು \frac{27x-18}{4} ಬಾರಿ ಗುಣಿಸಿ.
36x+120-2\times \frac{4\left(9x-4\right)-3\left(27x-18\right)}{12}\times 12x=6x\left(7x+5\right)
\frac{4\left(9x-4\right)}{12} ಮತ್ತು \frac{3\left(27x-18\right)}{12} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಕಳೆಯಿರಿ.
36x+120-2\times \frac{36x-16-81x+54}{12}\times 12x=6x\left(7x+5\right)
4\left(9x-4\right)-3\left(27x-18\right) ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
36x+120-2\times \frac{-45x+38}{12}\times 12x=6x\left(7x+5\right)
36x-16-81x+54 ನಲ್ಲಿ ಅಂಶಗಳಂತೆ ಕೂಡಿಸಿ.
36x+120-24\times \frac{-45x+38}{12}x=6x\left(7x+5\right)
24 ಪಡೆದುಕೊಳ್ಳಲು 2 ಮತ್ತು 12 ಗುಣಿಸಿ.
36x+120-2\left(-45x+38\right)x=6x\left(7x+5\right)
24 ಮತ್ತು 12 ನಲ್ಲಿ ಅತ್ಯುತ್ತಮ ಸಾಮಾನ್ಯ ಅಂಶ 12 ಅನ್ನು ರದ್ದುಗೊಳಿಸಿ.
36x+120-2\left(-45x+38\right)x=42x^{2}+30x
7x+5 ದಿಂದ 6x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
36x+120-2\left(-45x+38\right)x-42x^{2}=30x
ಎರಡೂ ಕಡೆಗಳಿಂದ 42x^{2} ಕಳೆಯಿರಿ.
36x+120-2\left(-45x+38\right)x-42x^{2}-30x=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 30x ಕಳೆಯಿರಿ.
36x+120+\left(90x-76\right)x-42x^{2}-30x=0
-45x+38 ದಿಂದ -2 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
36x+120+90x^{2}-76x-42x^{2}-30x=0
x ದಿಂದ 90x-76 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
-40x+120+90x^{2}-42x^{2}-30x=0
-40x ಪಡೆದುಕೊಳ್ಳಲು 36x ಮತ್ತು -76x ಕೂಡಿಸಿ.
-40x+120+48x^{2}-30x=0
48x^{2} ಪಡೆದುಕೊಳ್ಳಲು 90x^{2} ಮತ್ತು -42x^{2} ಕೂಡಿಸಿ.
-70x+120+48x^{2}=0
-70x ಪಡೆದುಕೊಳ್ಳಲು -40x ಮತ್ತು -30x ಕೂಡಿಸಿ.
-70x+48x^{2}=-120
ಎರಡೂ ಕಡೆಗಳಿಂದ 120 ಕಳೆಯಿರಿ. ಶೂನ್ಯದಿಂದ ಏನನ್ನಾದರೂ ಕಳೆದರೆ ಅದರ ಋಣಾತ್ಮಕವನ್ನು ನೀಡುತ್ತದೆ.
48x^{2}-70x=-120
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್ನಲ್ಲಿ ಇರಬೇಕು.
\frac{48x^{2}-70x}{48}=-\frac{120}{48}
48 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\left(-\frac{70}{48}\right)x=-\frac{120}{48}
48 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 48 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-\frac{35}{24}x=-\frac{120}{48}
2 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{-70}{48} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x^{2}-\frac{35}{24}x=-\frac{5}{2}
24 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{-120}{48} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x^{2}-\frac{35}{24}x+\left(-\frac{35}{48}\right)^{2}=-\frac{5}{2}+\left(-\frac{35}{48}\right)^{2}
-\frac{35}{48} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -\frac{35}{24} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{35}{48} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-\frac{35}{24}x+\frac{1225}{2304}=-\frac{5}{2}+\frac{1225}{2304}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{35}{48} ವರ್ಗಗೊಳಿಸಿ.
x^{2}-\frac{35}{24}x+\frac{1225}{2304}=-\frac{4535}{2304}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{1225}{2304} ಗೆ -\frac{5}{2} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
\left(x-\frac{35}{48}\right)^{2}=-\frac{4535}{2304}
ಅಪವರ್ತನ x^{2}-\frac{35}{24}x+\frac{1225}{2304}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-\frac{35}{48}\right)^{2}}=\sqrt{-\frac{4535}{2304}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-\frac{35}{48}=\frac{\sqrt{4535}i}{48} x-\frac{35}{48}=-\frac{\sqrt{4535}i}{48}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{35+\sqrt{4535}i}{48} x=\frac{-\sqrt{4535}i+35}{48}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{35}{48} ಸೇರಿಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}