ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಮೌಲ್ಯಮಾಪನ
Tick mark Image
ನೈಜ ಭಾಗ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

\frac{3i\times 1+3\left(-1\right)i^{2}}{1+i}
1-i ಅನ್ನು 3i ಬಾರಿ ಗುಣಿಸಿ.
\frac{3i\times 1+3\left(-1\right)\left(-1\right)}{1+i}
ವ್ಯಾಖ್ಯಾನದ ಮೂಲಕ, i^{2} ಎನ್ನುವುದು -1 ಆಗಿದೆ.
\frac{3+3i}{1+i}
3i\times 1+3\left(-1\right)\left(-1\right) ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ. ಪದಗಳನ್ನು ಮರುಕ್ರಮಗೊಳಿಸಿ.
\frac{\left(3+3i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}
ಛೇದದ ಸಂಕೀರ್ಣ ಸಂಯುಗ್ಮದ ಮೂಲಕ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದ ಎರಡನ್ನೂ ಗುಣಿಸಿ, 1-i.
\frac{\left(3+3i\right)\left(1-i\right)}{1^{2}-i^{2}}
ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3+3i\right)\left(1-i\right)}{2}
ವ್ಯಾಖ್ಯಾನದ ಮೂಲಕ, i^{2} ಎನ್ನುವುದು -1 ಆಗಿದೆ. ಛೇದವನ್ನು ಲೆಕ್ಕಹಾಕಿ.
\frac{3\times 1+3\left(-i\right)+3i\times 1+3\left(-1\right)i^{2}}{2}
ನೀವು ದ್ವಿಪದಗಳನ್ನು ಗುಣಿಸಿದಂತೆ 3+3i ಮತ್ತು 1-i ಸಂಕೀರ್ಣ ಸಂಖ್ಯೆಗಳನ್ನು ಗುಣಿಸಿ.
\frac{3\times 1+3\left(-i\right)+3i\times 1+3\left(-1\right)\left(-1\right)}{2}
ವ್ಯಾಖ್ಯಾನದ ಮೂಲಕ, i^{2} ಎನ್ನುವುದು -1 ಆಗಿದೆ.
\frac{3-3i+3i+3}{2}
3\times 1+3\left(-i\right)+3i\times 1+3\left(-1\right)\left(-1\right) ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{3+3+\left(-3+3\right)i}{2}
3-3i+3i+3 ನಲ್ಲಿ ನೈಜ ಮತ್ತು ಕಾಲ್ಪನಿಕ ಭಾಗಗಳನ್ನು ಕೂಡಿಸಿ.
\frac{6}{2}
3+3+\left(-3+3\right)i ನಲ್ಲಿ ಸಂಕಲನ ಮಾಡಿ.
3
3 ಪಡೆಯಲು 2 ರಿಂದ 6 ವಿಭಾಗಿಸಿ.
Re(\frac{3i\times 1+3\left(-1\right)i^{2}}{1+i})
1-i ಅನ್ನು 3i ಬಾರಿ ಗುಣಿಸಿ.
Re(\frac{3i\times 1+3\left(-1\right)\left(-1\right)}{1+i})
ವ್ಯಾಖ್ಯಾನದ ಮೂಲಕ, i^{2} ಎನ್ನುವುದು -1 ಆಗಿದೆ.
Re(\frac{3+3i}{1+i})
3i\times 1+3\left(-1\right)\left(-1\right) ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ. ಪದಗಳನ್ನು ಮರುಕ್ರಮಗೊಳಿಸಿ.
Re(\frac{\left(3+3i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)})
\frac{3+3i}{1+i} ನ ಗಣಕ ಮತ್ತು ಛೇದವನ್ನು, 1-i ಗಣಕದ ಸಂಕೀರ್ಣ ಸಂಯೋಗದಿಂದ ಗುಣಿಸಿ.
Re(\frac{\left(3+3i\right)\left(1-i\right)}{1^{2}-i^{2}})
ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(3+3i\right)\left(1-i\right)}{2})
ವ್ಯಾಖ್ಯಾನದ ಮೂಲಕ, i^{2} ಎನ್ನುವುದು -1 ಆಗಿದೆ. ಛೇದವನ್ನು ಲೆಕ್ಕಹಾಕಿ.
Re(\frac{3\times 1+3\left(-i\right)+3i\times 1+3\left(-1\right)i^{2}}{2})
ನೀವು ದ್ವಿಪದಗಳನ್ನು ಗುಣಿಸಿದಂತೆ 3+3i ಮತ್ತು 1-i ಸಂಕೀರ್ಣ ಸಂಖ್ಯೆಗಳನ್ನು ಗುಣಿಸಿ.
Re(\frac{3\times 1+3\left(-i\right)+3i\times 1+3\left(-1\right)\left(-1\right)}{2})
ವ್ಯಾಖ್ಯಾನದ ಮೂಲಕ, i^{2} ಎನ್ನುವುದು -1 ಆಗಿದೆ.
Re(\frac{3-3i+3i+3}{2})
3\times 1+3\left(-i\right)+3i\times 1+3\left(-1\right)\left(-1\right) ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
Re(\frac{3+3+\left(-3+3\right)i}{2})
3-3i+3i+3 ನಲ್ಲಿ ನೈಜ ಮತ್ತು ಕಾಲ್ಪನಿಕ ಭಾಗಗಳನ್ನು ಕೂಡಿಸಿ.
Re(\frac{6}{2})
3+3+\left(-3+3\right)i ನಲ್ಲಿ ಸಂಕಲನ ಮಾಡಿ.
Re(3)
3 ಪಡೆಯಲು 2 ರಿಂದ 6 ವಿಭಾಗಿಸಿ.
3
3 ನ ನೈಜ ಭಾಗವು 3 ಆಗಿದೆ.