ಮೌಲ್ಯಮಾಪನ
0
ಅಪವರ್ತನ
0
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
\frac{3a}{a+b}+\frac{ab-5a^{2}}{\left(a+b\right)\left(a-b\right)}+\frac{2a}{a-b}
ಅಪವರ್ತನ a^{2}-b^{2}.
\frac{3a\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}+\frac{ab-5a^{2}}{\left(a+b\right)\left(a-b\right)}+\frac{2a}{a-b}
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. a+b ಮತ್ತು \left(a+b\right)\left(a-b\right) ಇವುಗಳ ಕನಿಷ್ಠ ಅಪವರ್ತ್ಯವು \left(a+b\right)\left(a-b\right) ಆಗಿದೆ. \frac{a-b}{a-b} ಅನ್ನು \frac{3a}{a+b} ಬಾರಿ ಗುಣಿಸಿ.
\frac{3a\left(a-b\right)+ab-5a^{2}}{\left(a+b\right)\left(a-b\right)}+\frac{2a}{a-b}
\frac{3a\left(a-b\right)}{\left(a+b\right)\left(a-b\right)} ಮತ್ತು \frac{ab-5a^{2}}{\left(a+b\right)\left(a-b\right)} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಸೇರಿಸಿ.
\frac{3a^{2}-3ab+ab-5a^{2}}{\left(a+b\right)\left(a-b\right)}+\frac{2a}{a-b}
3a\left(a-b\right)+ab-5a^{2} ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{-2a^{2}-2ab}{\left(a+b\right)\left(a-b\right)}+\frac{2a}{a-b}
3a^{2}-3ab+ab-5a^{2} ನಲ್ಲಿ ಅಂಶಗಳಂತೆ ಕೂಡಿಸಿ.
\frac{2a\left(-a-b\right)}{\left(a+b\right)\left(a-b\right)}+\frac{2a}{a-b}
ಈಗಾಗಲೇ \frac{-2a^{2}-2ab}{\left(a+b\right)\left(a-b\right)} ನಲ್ಲಿ ಅಪವರ್ತನಗೊಳಿಸದ ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\frac{-2a\left(a+b\right)}{\left(a+b\right)\left(a-b\right)}+\frac{2a}{a-b}
-a-b ನಲ್ಲಿ ಋಣಾತ್ಮಕ ಚಿಹ್ನೆಯನ್ನು ಬೇರೆ ಮಾಡಿ.
\frac{-2a}{a-b}+\frac{2a}{a-b}
ಗಣಕ ಮತ್ತು ಛೇದ ಎರಡರಲ್ಲೂ a+b ರದ್ದುಗೊಳಿಸಿ.
\frac{-2a+2a}{a-b}
\frac{-2a}{a-b} ಮತ್ತು \frac{2a}{a-b} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಸೇರಿಸಿ.
\frac{0}{a-b}
-2a+2a ನಲ್ಲಿ ಅಂಶಗಳಂತೆ ಕೂಡಿಸಿ.
0
ಶೂನ್ಯವನ್ನು ಯಾವುದೇ ಶೂನ್ಯವಲ್ಲದ ಸಂಖ್ಯೆಯಿಂದ ಭಾಗಿಸಿದರೆ ಶೂನ್ಯ ದೊರೆಯುತ್ತದೆ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}