x ಪರಿಹರಿಸಿ
x=-3
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
\left(x-3\right)\times 3+\left(x-3\right)^{2}=x\times 2x
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ ಯಾವುದೇ 0,3 ಮೌಲ್ಯಗಳಿಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು x\left(x-3\right)^{2}, x^{2}-3x,x,x^{2}-6x+9 ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
3x-9+\left(x-3\right)^{2}=x\times 2x
3 ದಿಂದ x-3 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
3x-9+x^{2}-6x+9=x\times 2x
\left(x-3\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ಬಳಸಿ.
-3x-9+x^{2}+9=x\times 2x
-3x ಪಡೆದುಕೊಳ್ಳಲು 3x ಮತ್ತು -6x ಕೂಡಿಸಿ.
-3x+x^{2}=x\times 2x
0 ಪಡೆದುಕೊಳ್ಳಲು -9 ಮತ್ತು 9 ಸೇರಿಸಿ.
-3x+x^{2}=x^{2}\times 2
x^{2} ಪಡೆದುಕೊಳ್ಳಲು x ಮತ್ತು x ಗುಣಿಸಿ.
-3x+x^{2}-x^{2}\times 2=0
ಎರಡೂ ಕಡೆಗಳಿಂದ x^{2}\times 2 ಕಳೆಯಿರಿ.
-3x-x^{2}=0
-x^{2} ಪಡೆದುಕೊಳ್ಳಲು x^{2} ಮತ್ತು -x^{2}\times 2 ಕೂಡಿಸಿ.
x\left(-3-x\right)=0
x ಅಪವರ್ತನಗೊಳಿಸಿ.
x=0 x=-3
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, x=0 ಮತ್ತು -3-x=0 ಪರಿಹರಿಸಿ.
x=-3
x ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮಾನಾಗಿರಬಾರದು.
\left(x-3\right)\times 3+\left(x-3\right)^{2}=x\times 2x
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ ಯಾವುದೇ 0,3 ಮೌಲ್ಯಗಳಿಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು x\left(x-3\right)^{2}, x^{2}-3x,x,x^{2}-6x+9 ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
3x-9+\left(x-3\right)^{2}=x\times 2x
3 ದಿಂದ x-3 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
3x-9+x^{2}-6x+9=x\times 2x
\left(x-3\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ಬಳಸಿ.
-3x-9+x^{2}+9=x\times 2x
-3x ಪಡೆದುಕೊಳ್ಳಲು 3x ಮತ್ತು -6x ಕೂಡಿಸಿ.
-3x+x^{2}=x\times 2x
0 ಪಡೆದುಕೊಳ್ಳಲು -9 ಮತ್ತು 9 ಸೇರಿಸಿ.
-3x+x^{2}=x^{2}\times 2
x^{2} ಪಡೆದುಕೊಳ್ಳಲು x ಮತ್ತು x ಗುಣಿಸಿ.
-3x+x^{2}-x^{2}\times 2=0
ಎರಡೂ ಕಡೆಗಳಿಂದ x^{2}\times 2 ಕಳೆಯಿರಿ.
-3x-x^{2}=0
-x^{2} ಪಡೆದುಕೊಳ್ಳಲು x^{2} ಮತ್ತು -x^{2}\times 2 ಕೂಡಿಸಿ.
-x^{2}-3x=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}}}{2\left(-1\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -1, b ಗೆ -3 ಮತ್ತು c ಗೆ 0 ಬದಲಿಸಿ.
x=\frac{-\left(-3\right)±3}{2\left(-1\right)}
\left(-3\right)^{2} ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{3±3}{2\left(-1\right)}
-3 ನ ವಿಲೋಮವು 3 ಆಗಿದೆ.
x=\frac{3±3}{-2}
-1 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{6}{-2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{3±3}{-2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 3 ಗೆ 3 ಸೇರಿಸಿ.
x=-3
-2 ದಿಂದ 6 ಭಾಗಿಸಿ.
x=\frac{0}{-2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{3±3}{-2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 3 ದಿಂದ 3 ಕಳೆಯಿರಿ.
x=0
-2 ದಿಂದ 0 ಭಾಗಿಸಿ.
x=-3 x=0
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
x=-3
x ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮಾನಾಗಿರಬಾರದು.
\left(x-3\right)\times 3+\left(x-3\right)^{2}=x\times 2x
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ ಯಾವುದೇ 0,3 ಮೌಲ್ಯಗಳಿಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು x\left(x-3\right)^{2}, x^{2}-3x,x,x^{2}-6x+9 ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
3x-9+\left(x-3\right)^{2}=x\times 2x
3 ದಿಂದ x-3 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
3x-9+x^{2}-6x+9=x\times 2x
\left(x-3\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ಬಳಸಿ.
-3x-9+x^{2}+9=x\times 2x
-3x ಪಡೆದುಕೊಳ್ಳಲು 3x ಮತ್ತು -6x ಕೂಡಿಸಿ.
-3x+x^{2}=x\times 2x
0 ಪಡೆದುಕೊಳ್ಳಲು -9 ಮತ್ತು 9 ಸೇರಿಸಿ.
-3x+x^{2}=x^{2}\times 2
x^{2} ಪಡೆದುಕೊಳ್ಳಲು x ಮತ್ತು x ಗುಣಿಸಿ.
-3x+x^{2}-x^{2}\times 2=0
ಎರಡೂ ಕಡೆಗಳಿಂದ x^{2}\times 2 ಕಳೆಯಿರಿ.
-3x-x^{2}=0
-x^{2} ಪಡೆದುಕೊಳ್ಳಲು x^{2} ಮತ್ತು -x^{2}\times 2 ಕೂಡಿಸಿ.
-x^{2}-3x=0
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್ನಲ್ಲಿ ಇರಬೇಕು.
\frac{-x^{2}-3x}{-1}=\frac{0}{-1}
-1 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\left(-\frac{3}{-1}\right)x=\frac{0}{-1}
-1 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -1 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}+3x=\frac{0}{-1}
-1 ದಿಂದ -3 ಭಾಗಿಸಿ.
x^{2}+3x=0
-1 ದಿಂದ 0 ಭಾಗಿಸಿ.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=\left(\frac{3}{2}\right)^{2}
\frac{3}{2} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ 3 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ \frac{3}{2} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+3x+\frac{9}{4}=\frac{9}{4}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ \frac{3}{2} ವರ್ಗಗೊಳಿಸಿ.
\left(x+\frac{3}{2}\right)^{2}=\frac{9}{4}
ಅಪವರ್ತನ x^{2}+3x+\frac{9}{4}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+\frac{3}{2}=\frac{3}{2} x+\frac{3}{2}=-\frac{3}{2}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=0 x=-3
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{3}{2} ಕಳೆಯಿರಿ.
x=-3
x ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮಾನಾಗಿರಬಾರದು.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}