ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಮೌಲ್ಯಮಾಪನ
Tick mark Image
ವ್ಯತ್ಯಾಸ w.r.t. x
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

\frac{3}{x+5}+\frac{1}{\left(x-5\right)\left(x+5\right)}
ಅಪವರ್ತನ x^{2}-25.
\frac{3\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}+\frac{1}{\left(x-5\right)\left(x+5\right)}
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. x+5 ಮತ್ತು \left(x-5\right)\left(x+5\right) ಇವುಗಳ ಕನಿಷ್ಠ ಅಪವರ್ತ್ಯವು \left(x-5\right)\left(x+5\right) ಆಗಿದೆ. \frac{x-5}{x-5} ಅನ್ನು \frac{3}{x+5} ಬಾರಿ ಗುಣಿಸಿ.
\frac{3\left(x-5\right)+1}{\left(x-5\right)\left(x+5\right)}
\frac{3\left(x-5\right)}{\left(x-5\right)\left(x+5\right)} ಮತ್ತು \frac{1}{\left(x-5\right)\left(x+5\right)} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಸೇರಿಸಿ.
\frac{3x-15+1}{\left(x-5\right)\left(x+5\right)}
3\left(x-5\right)+1 ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{3x-14}{\left(x-5\right)\left(x+5\right)}
3x-15+1 ನಲ್ಲಿ ಅಂಶಗಳಂತೆ ಕೂಡಿಸಿ.
\frac{3x-14}{x^{2}-25}
\left(x-5\right)\left(x+5\right) ವಿಸ್ತರಿಸಿ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3}{x+5}+\frac{1}{\left(x-5\right)\left(x+5\right)})
ಅಪವರ್ತನ x^{2}-25.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}+\frac{1}{\left(x-5\right)\left(x+5\right)})
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. x+5 ಮತ್ತು \left(x-5\right)\left(x+5\right) ಇವುಗಳ ಕನಿಷ್ಠ ಅಪವರ್ತ್ಯವು \left(x-5\right)\left(x+5\right) ಆಗಿದೆ. \frac{x-5}{x-5} ಅನ್ನು \frac{3}{x+5} ಬಾರಿ ಗುಣಿಸಿ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\left(x-5\right)+1}{\left(x-5\right)\left(x+5\right)})
\frac{3\left(x-5\right)}{\left(x-5\right)\left(x+5\right)} ಮತ್ತು \frac{1}{\left(x-5\right)\left(x+5\right)} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಸೇರಿಸಿ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3x-15+1}{\left(x-5\right)\left(x+5\right)})
3\left(x-5\right)+1 ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3x-14}{\left(x-5\right)\left(x+5\right)})
3x-15+1 ನಲ್ಲಿ ಅಂಶಗಳಂತೆ ಕೂಡಿಸಿ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3x-14}{x^{2}-25})
\left(x-5\right)\left(x+5\right) ಪರಿಗಣಿಸಿ. ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. ವರ್ಗ 5.
\frac{\left(x^{2}-25\right)\frac{\mathrm{d}}{\mathrm{d}x}(3x^{1}-14)-\left(3x^{1}-14\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-25)}{\left(x^{2}-25\right)^{2}}
ಯಾವುದೇ ಎರಡು ವ್ಯತ್ಯಾಸವಿಲ್ಲದ ಕಾರ್ಯಗಳಿಗೆ, ಎರಡು ಕಾರ್ಯಗಳ ಭಾಗಲಬ್ಧ ವ್ಯುತ್ಪನ್ನವು ಸಂಖ್ಯಾಕಾರ ವ್ಯುತ್ಪನ್ನದ ಛೇದದ ಸಮಯವನ್ನು ಛೇದದ ವ್ಯುತ್ಪನ್ನದ ಸಂಖ್ಯಾಕಾರ ಸಮಯದಲ್ಲಿ ವ್ಯವಕಲಿಸುತ್ತದೆ, ಎಲ್ಲವನ್ನು ವರ್ಗಮಾಡಲಾದ ಛೇದದಿಂದ ವಿಭಜಿಸಲಾಗಿದೆ.
\frac{\left(x^{2}-25\right)\times 3x^{1-1}-\left(3x^{1}-14\right)\times 2x^{2-1}}{\left(x^{2}-25\right)^{2}}
ಬಹುಪದೀಯದ ವ್ಯುತ್ಪತ್ತಿಯು ಅದರ ಪದಗಳ ವ್ಯುತ್ಪತ್ತಿಗಳ ಮೊತ್ತವಾಗಿದೆ. ಯಾವುದೇ ಸ್ಥಿರ ಪದದ ವ್ಯುತ್ಪತ್ತಿಯು 0 ಆಗಿದೆ. ax^{n} ನ ವ್ಯುತ್ಪತ್ತಿಯು nax^{n-1} ಆಗಿದೆ.
\frac{\left(x^{2}-25\right)\times 3x^{0}-\left(3x^{1}-14\right)\times 2x^{1}}{\left(x^{2}-25\right)^{2}}
ಅಂಕಗಣಿತ ಮಾಡಿ.
\frac{x^{2}\times 3x^{0}-25\times 3x^{0}-\left(3x^{1}\times 2x^{1}-14\times 2x^{1}\right)}{\left(x^{2}-25\right)^{2}}
ವಿಭಾಜಕ ಗುಣಲಕ್ಷಣ ಬಳಸಿಕೊಂಡು ವಿಸ್ತರಿಸಿ.
\frac{3x^{2}-25\times 3x^{0}-\left(3\times 2x^{1+1}-14\times 2x^{1}\right)}{\left(x^{2}-25\right)^{2}}
ಒಂದೇ ಆಧಾರ ಸಂಖ್ಯೆಯ ಘಾತಗಳನ್ನು ಗುಣಿಸಲು ಅದರ ಘಾತಾಂಕಗಳನ್ನು ಸೇರಿಸಿ.
\frac{3x^{2}-75x^{0}-\left(6x^{2}-28x^{1}\right)}{\left(x^{2}-25\right)^{2}}
ಅಂಕಗಣಿತ ಮಾಡಿ.
\frac{3x^{2}-75x^{0}-6x^{2}-\left(-28x^{1}\right)}{\left(x^{2}-25\right)^{2}}
ಅನಗತ್ಯವಾದ ಆವರಣ ಚಿಹ್ನೆಗಳನ್ನು ತೆಗೆದುಹಾಕಿ.
\frac{\left(3-6\right)x^{2}-75x^{0}-\left(-28x^{1}\right)}{\left(x^{2}-25\right)^{2}}
ಪದಗಳಂತೆ ಕೂಡಿಸಿ.
\frac{-3x^{2}-75x^{0}-\left(-28x^{1}\right)}{\left(x^{2}-25\right)^{2}}
3 ದಿಂದ 6 ಕಳೆಯಿರಿ.
\frac{-3x^{2}-75x^{0}-\left(-28x\right)}{\left(x^{2}-25\right)^{2}}
ಯಾವುದೇ ಪದಕ್ಕೆ t, t^{1}=t.
\frac{-3x^{2}-75-\left(-28x\right)}{\left(x^{2}-25\right)^{2}}
0, t^{0}=1 ಹೊರತುಪಡಿಸಿ ಯಾವುದೇ ಪದ t ಗೆ.