x ಪರಿಹರಿಸಿ
x=2
x=-2
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
\left(x-1\right)\times 3+\left(x-1\right)\left(x+1\right)\times 2=\left(x+1\right)\times 3
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ ಯಾವುದೇ -1,1 ಮೌಲ್ಯಗಳಿಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು \left(x-1\right)\left(x+1\right), x+1,x-1 ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
3x-3+\left(x-1\right)\left(x+1\right)\times 2=\left(x+1\right)\times 3
3 ದಿಂದ x-1 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
3x-3+\left(x^{2}-1\right)\times 2=\left(x+1\right)\times 3
x+1 ರಿಂದು x-1 ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
3x-3+2x^{2}-2=\left(x+1\right)\times 3
2 ದಿಂದ x^{2}-1 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
3x-5+2x^{2}=\left(x+1\right)\times 3
-5 ಪಡೆದುಕೊಳ್ಳಲು -3 ದಿಂದ 2 ಕಳೆಯಿರಿ.
3x-5+2x^{2}=3x+3
3 ದಿಂದ x+1 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
3x-5+2x^{2}-3x=3
ಎರಡೂ ಕಡೆಗಳಿಂದ 3x ಕಳೆಯಿರಿ.
-5+2x^{2}=3
0 ಪಡೆದುಕೊಳ್ಳಲು 3x ಮತ್ತು -3x ಕೂಡಿಸಿ.
2x^{2}=3+5
ಎರಡೂ ಬದಿಗಳಿಗೆ 5 ಸೇರಿಸಿ.
2x^{2}=8
8 ಪಡೆದುಕೊಳ್ಳಲು 3 ಮತ್ತು 5 ಸೇರಿಸಿ.
x^{2}=\frac{8}{2}
2 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}=4
4 ಪಡೆಯಲು 2 ರಿಂದ 8 ವಿಭಾಗಿಸಿ.
x=2 x=-2
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
\left(x-1\right)\times 3+\left(x-1\right)\left(x+1\right)\times 2=\left(x+1\right)\times 3
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ ಯಾವುದೇ -1,1 ಮೌಲ್ಯಗಳಿಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು \left(x-1\right)\left(x+1\right), x+1,x-1 ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
3x-3+\left(x-1\right)\left(x+1\right)\times 2=\left(x+1\right)\times 3
3 ದಿಂದ x-1 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
3x-3+\left(x^{2}-1\right)\times 2=\left(x+1\right)\times 3
x+1 ರಿಂದು x-1 ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
3x-3+2x^{2}-2=\left(x+1\right)\times 3
2 ದಿಂದ x^{2}-1 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
3x-5+2x^{2}=\left(x+1\right)\times 3
-5 ಪಡೆದುಕೊಳ್ಳಲು -3 ದಿಂದ 2 ಕಳೆಯಿರಿ.
3x-5+2x^{2}=3x+3
3 ದಿಂದ x+1 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
3x-5+2x^{2}-3x=3
ಎರಡೂ ಕಡೆಗಳಿಂದ 3x ಕಳೆಯಿರಿ.
-5+2x^{2}=3
0 ಪಡೆದುಕೊಳ್ಳಲು 3x ಮತ್ತು -3x ಕೂಡಿಸಿ.
-5+2x^{2}-3=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 3 ಕಳೆಯಿರಿ.
-8+2x^{2}=0
-8 ಪಡೆದುಕೊಳ್ಳಲು -5 ದಿಂದ 3 ಕಳೆಯಿರಿ.
2x^{2}-8=0
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳು, x^{2} ಪದದ ಜೊತೆಗೆ ಆದರೆ ಯಾವುದೇ x ಪದವಿಲ್ಲ, ಒಮ್ಮೆ ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿ ಅವುಗಳನ್ನು ಇರಿಸಿದರೆ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ವರ್ಗ ಸೂತ್ರವನ್ನು ಬಳಸಿಕೊಂಡು ಇನ್ನೂ ಪರಿಹರಿಸಬಹುದು: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 2\left(-8\right)}}{2\times 2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 2, b ಗೆ 0 ಮತ್ತು c ಗೆ -8 ಬದಲಿಸಿ.
x=\frac{0±\sqrt{-4\times 2\left(-8\right)}}{2\times 2}
ವರ್ಗ 0.
x=\frac{0±\sqrt{-8\left(-8\right)}}{2\times 2}
2 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{0±\sqrt{64}}{2\times 2}
-8 ಅನ್ನು -8 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{0±8}{2\times 2}
64 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{0±8}{4}
2 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=2
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{0±8}{4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 4 ದಿಂದ 8 ಭಾಗಿಸಿ.
x=-2
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{0±8}{4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 4 ದಿಂದ -8 ಭಾಗಿಸಿ.
x=2 x=-2
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}