ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಮೌಲ್ಯಮಾಪನ
Tick mark Image
ವಿಸ್ತರಿಸು
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

\frac{2z+3}{\left(z-2\right)\left(z+6\right)}+\frac{7}{\left(z-1\right)\left(z+6\right)}
ಅಪವರ್ತನ z^{2}+4z-12. ಅಪವರ್ತನ z^{2}+5z-6.
\frac{\left(2z+3\right)\left(z-1\right)}{\left(z-2\right)\left(z-1\right)\left(z+6\right)}+\frac{7\left(z-2\right)}{\left(z-2\right)\left(z-1\right)\left(z+6\right)}
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. \left(z-2\right)\left(z+6\right) ಮತ್ತು \left(z-1\right)\left(z+6\right) ಇವುಗಳ ಕನಿಷ್ಠ ಅಪವರ್ತ್ಯವು \left(z-2\right)\left(z-1\right)\left(z+6\right) ಆಗಿದೆ. \frac{z-1}{z-1} ಅನ್ನು \frac{2z+3}{\left(z-2\right)\left(z+6\right)} ಬಾರಿ ಗುಣಿಸಿ. \frac{z-2}{z-2} ಅನ್ನು \frac{7}{\left(z-1\right)\left(z+6\right)} ಬಾರಿ ಗುಣಿಸಿ.
\frac{\left(2z+3\right)\left(z-1\right)+7\left(z-2\right)}{\left(z-2\right)\left(z-1\right)\left(z+6\right)}
\frac{\left(2z+3\right)\left(z-1\right)}{\left(z-2\right)\left(z-1\right)\left(z+6\right)} ಮತ್ತು \frac{7\left(z-2\right)}{\left(z-2\right)\left(z-1\right)\left(z+6\right)} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಸೇರಿಸಿ.
\frac{2z^{2}-2z+3z-3+7z-14}{\left(z-2\right)\left(z-1\right)\left(z+6\right)}
\left(2z+3\right)\left(z-1\right)+7\left(z-2\right) ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{2z^{2}+8z-17}{\left(z-2\right)\left(z-1\right)\left(z+6\right)}
2z^{2}-2z+3z-3+7z-14 ನಲ್ಲಿ ಅಂಶಗಳಂತೆ ಕೂಡಿಸಿ.
\frac{2z^{2}+8z-17}{z^{3}+3z^{2}-16z+12}
\left(z-2\right)\left(z-1\right)\left(z+6\right) ವಿಸ್ತರಿಸಿ.
\frac{2z+3}{\left(z-2\right)\left(z+6\right)}+\frac{7}{\left(z-1\right)\left(z+6\right)}
ಅಪವರ್ತನ z^{2}+4z-12. ಅಪವರ್ತನ z^{2}+5z-6.
\frac{\left(2z+3\right)\left(z-1\right)}{\left(z-2\right)\left(z-1\right)\left(z+6\right)}+\frac{7\left(z-2\right)}{\left(z-2\right)\left(z-1\right)\left(z+6\right)}
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. \left(z-2\right)\left(z+6\right) ಮತ್ತು \left(z-1\right)\left(z+6\right) ಇವುಗಳ ಕನಿಷ್ಠ ಅಪವರ್ತ್ಯವು \left(z-2\right)\left(z-1\right)\left(z+6\right) ಆಗಿದೆ. \frac{z-1}{z-1} ಅನ್ನು \frac{2z+3}{\left(z-2\right)\left(z+6\right)} ಬಾರಿ ಗುಣಿಸಿ. \frac{z-2}{z-2} ಅನ್ನು \frac{7}{\left(z-1\right)\left(z+6\right)} ಬಾರಿ ಗುಣಿಸಿ.
\frac{\left(2z+3\right)\left(z-1\right)+7\left(z-2\right)}{\left(z-2\right)\left(z-1\right)\left(z+6\right)}
\frac{\left(2z+3\right)\left(z-1\right)}{\left(z-2\right)\left(z-1\right)\left(z+6\right)} ಮತ್ತು \frac{7\left(z-2\right)}{\left(z-2\right)\left(z-1\right)\left(z+6\right)} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಸೇರಿಸಿ.
\frac{2z^{2}-2z+3z-3+7z-14}{\left(z-2\right)\left(z-1\right)\left(z+6\right)}
\left(2z+3\right)\left(z-1\right)+7\left(z-2\right) ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{2z^{2}+8z-17}{\left(z-2\right)\left(z-1\right)\left(z+6\right)}
2z^{2}-2z+3z-3+7z-14 ನಲ್ಲಿ ಅಂಶಗಳಂತೆ ಕೂಡಿಸಿ.
\frac{2z^{2}+8z-17}{z^{3}+3z^{2}-16z+12}
\left(z-2\right)\left(z-1\right)\left(z+6\right) ವಿಸ್ತರಿಸಿ.