x ಪರಿಹರಿಸಿ
x=6
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
\left(x-2\right)\left(2x-5\right)+\left(x+1\right)\times 4=\left(x+1\right)\left(x+2\right)
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ ಯಾವುದೇ -2,-1,2 ಮೌಲ್ಯಗಳಿಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು \left(x-2\right)\left(x+1\right)\left(x+2\right), x^{2}+3x+2,x^{2}-4,x-2 ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
2x^{2}-9x+10+\left(x+1\right)\times 4=\left(x+1\right)\left(x+2\right)
2x-5 ರಿಂದು x-2 ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
2x^{2}-9x+10+4x+4=\left(x+1\right)\left(x+2\right)
4 ದಿಂದ x+1 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
2x^{2}-5x+10+4=\left(x+1\right)\left(x+2\right)
-5x ಪಡೆದುಕೊಳ್ಳಲು -9x ಮತ್ತು 4x ಕೂಡಿಸಿ.
2x^{2}-5x+14=\left(x+1\right)\left(x+2\right)
14 ಪಡೆದುಕೊಳ್ಳಲು 10 ಮತ್ತು 4 ಸೇರಿಸಿ.
2x^{2}-5x+14=x^{2}+3x+2
x+2 ರಿಂದು x+1 ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
2x^{2}-5x+14-x^{2}=3x+2
ಎರಡೂ ಕಡೆಗಳಿಂದ x^{2} ಕಳೆಯಿರಿ.
x^{2}-5x+14=3x+2
x^{2} ಪಡೆದುಕೊಳ್ಳಲು 2x^{2} ಮತ್ತು -x^{2} ಕೂಡಿಸಿ.
x^{2}-5x+14-3x=2
ಎರಡೂ ಕಡೆಗಳಿಂದ 3x ಕಳೆಯಿರಿ.
x^{2}-8x+14=2
-8x ಪಡೆದುಕೊಳ್ಳಲು -5x ಮತ್ತು -3x ಕೂಡಿಸಿ.
x^{2}-8x+14-2=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 2 ಕಳೆಯಿರಿ.
x^{2}-8x+12=0
12 ಪಡೆದುಕೊಳ್ಳಲು 14 ದಿಂದ 2 ಕಳೆಯಿರಿ.
a+b=-8 ab=12
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) ಸೂತ್ರವನ್ನು ಬಳಸಿಕೊಂಡು x^{2}-8x+12 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
-1,-12 -2,-6 -3,-4
ab ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಒಂದೇ ಚಿಹ್ನೆಯನ್ನು ಹೊಂದಿವೆ. a+b ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಎರಡೂ ಋಣಾತ್ಮಕವಾಗಿವೆ. ಉತ್ಪನ್ನ 12 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
-1-12=-13 -2-6=-8 -3-4=-7
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=-6 b=-2
ಪರಿಹಾರವು -8 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(x-6\right)\left(x-2\right)
ಪಡೆದುಕೊಂಡ ಮೌಲ್ಯಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಅಪವರ್ತನಗೊಳಿಸಿದ ಅಭಿವ್ಯಕ್ತಿ \left(x+a\right)\left(x+b\right) ಅನ್ನು ಮರುಬರೆಯಿರಿ.
x=6 x=2
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, x-6=0 ಮತ್ತು x-2=0 ಪರಿಹರಿಸಿ.
x=6
x ವೇರಿಯೇಬಲ್ 2 ಗೆ ಸಮಾನಾಗಿರಬಾರದು.
\left(x-2\right)\left(2x-5\right)+\left(x+1\right)\times 4=\left(x+1\right)\left(x+2\right)
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ ಯಾವುದೇ -2,-1,2 ಮೌಲ್ಯಗಳಿಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು \left(x-2\right)\left(x+1\right)\left(x+2\right), x^{2}+3x+2,x^{2}-4,x-2 ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
2x^{2}-9x+10+\left(x+1\right)\times 4=\left(x+1\right)\left(x+2\right)
2x-5 ರಿಂದು x-2 ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
2x^{2}-9x+10+4x+4=\left(x+1\right)\left(x+2\right)
4 ದಿಂದ x+1 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
2x^{2}-5x+10+4=\left(x+1\right)\left(x+2\right)
-5x ಪಡೆದುಕೊಳ್ಳಲು -9x ಮತ್ತು 4x ಕೂಡಿಸಿ.
2x^{2}-5x+14=\left(x+1\right)\left(x+2\right)
14 ಪಡೆದುಕೊಳ್ಳಲು 10 ಮತ್ತು 4 ಸೇರಿಸಿ.
2x^{2}-5x+14=x^{2}+3x+2
x+2 ರಿಂದು x+1 ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
2x^{2}-5x+14-x^{2}=3x+2
ಎರಡೂ ಕಡೆಗಳಿಂದ x^{2} ಕಳೆಯಿರಿ.
x^{2}-5x+14=3x+2
x^{2} ಪಡೆದುಕೊಳ್ಳಲು 2x^{2} ಮತ್ತು -x^{2} ಕೂಡಿಸಿ.
x^{2}-5x+14-3x=2
ಎರಡೂ ಕಡೆಗಳಿಂದ 3x ಕಳೆಯಿರಿ.
x^{2}-8x+14=2
-8x ಪಡೆದುಕೊಳ್ಳಲು -5x ಮತ್ತು -3x ಕೂಡಿಸಿ.
x^{2}-8x+14-2=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 2 ಕಳೆಯಿರಿ.
x^{2}-8x+12=0
12 ಪಡೆದುಕೊಳ್ಳಲು 14 ದಿಂದ 2 ಕಳೆಯಿರಿ.
a+b=-8 ab=1\times 12=12
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು, ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಎಡಭಾಗದಲ್ಲಿ ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಎಡಭಾಗವನ್ನು x^{2}+ax+bx+12 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
-1,-12 -2,-6 -3,-4
ab ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಒಂದೇ ಚಿಹ್ನೆಯನ್ನು ಹೊಂದಿವೆ. a+b ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಎರಡೂ ಋಣಾತ್ಮಕವಾಗಿವೆ. ಉತ್ಪನ್ನ 12 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
-1-12=-13 -2-6=-8 -3-4=-7
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=-6 b=-2
ಪರಿಹಾರವು -8 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(x^{2}-6x\right)+\left(-2x+12\right)
\left(x^{2}-6x\right)+\left(-2x+12\right) ನ ಹಾಗೆ x^{2}-8x+12 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
x\left(x-6\right)-2\left(x-6\right)
ಮೊದಲನೆಯದರಲ್ಲಿ x ಅನ್ನು ಮತ್ತು ಎರಡನೆಯ ಗುಂಪಿನಲ್ಲಿ -2 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(x-6\right)\left(x-2\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ x-6 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
x=6 x=2
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, x-6=0 ಮತ್ತು x-2=0 ಪರಿಹರಿಸಿ.
x=6
x ವೇರಿಯೇಬಲ್ 2 ಗೆ ಸಮಾನಾಗಿರಬಾರದು.
\left(x-2\right)\left(2x-5\right)+\left(x+1\right)\times 4=\left(x+1\right)\left(x+2\right)
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ ಯಾವುದೇ -2,-1,2 ಮೌಲ್ಯಗಳಿಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು \left(x-2\right)\left(x+1\right)\left(x+2\right), x^{2}+3x+2,x^{2}-4,x-2 ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
2x^{2}-9x+10+\left(x+1\right)\times 4=\left(x+1\right)\left(x+2\right)
2x-5 ರಿಂದು x-2 ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
2x^{2}-9x+10+4x+4=\left(x+1\right)\left(x+2\right)
4 ದಿಂದ x+1 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
2x^{2}-5x+10+4=\left(x+1\right)\left(x+2\right)
-5x ಪಡೆದುಕೊಳ್ಳಲು -9x ಮತ್ತು 4x ಕೂಡಿಸಿ.
2x^{2}-5x+14=\left(x+1\right)\left(x+2\right)
14 ಪಡೆದುಕೊಳ್ಳಲು 10 ಮತ್ತು 4 ಸೇರಿಸಿ.
2x^{2}-5x+14=x^{2}+3x+2
x+2 ರಿಂದು x+1 ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
2x^{2}-5x+14-x^{2}=3x+2
ಎರಡೂ ಕಡೆಗಳಿಂದ x^{2} ಕಳೆಯಿರಿ.
x^{2}-5x+14=3x+2
x^{2} ಪಡೆದುಕೊಳ್ಳಲು 2x^{2} ಮತ್ತು -x^{2} ಕೂಡಿಸಿ.
x^{2}-5x+14-3x=2
ಎರಡೂ ಕಡೆಗಳಿಂದ 3x ಕಳೆಯಿರಿ.
x^{2}-8x+14=2
-8x ಪಡೆದುಕೊಳ್ಳಲು -5x ಮತ್ತು -3x ಕೂಡಿಸಿ.
x^{2}-8x+14-2=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 2 ಕಳೆಯಿರಿ.
x^{2}-8x+12=0
12 ಪಡೆದುಕೊಳ್ಳಲು 14 ದಿಂದ 2 ಕಳೆಯಿರಿ.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 12}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ -8 ಮತ್ತು c ಗೆ 12 ಬದಲಿಸಿ.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 12}}{2}
ವರ್ಗ -8.
x=\frac{-\left(-8\right)±\sqrt{64-48}}{2}
12 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-8\right)±\sqrt{16}}{2}
-48 ಗೆ 64 ಸೇರಿಸಿ.
x=\frac{-\left(-8\right)±4}{2}
16 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{8±4}{2}
-8 ನ ವಿಲೋಮವು 8 ಆಗಿದೆ.
x=\frac{12}{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{8±4}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 4 ಗೆ 8 ಸೇರಿಸಿ.
x=6
2 ದಿಂದ 12 ಭಾಗಿಸಿ.
x=\frac{4}{2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{8±4}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 8 ದಿಂದ 4 ಕಳೆಯಿರಿ.
x=2
2 ದಿಂದ 4 ಭಾಗಿಸಿ.
x=6 x=2
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
x=6
x ವೇರಿಯೇಬಲ್ 2 ಗೆ ಸಮಾನಾಗಿರಬಾರದು.
\left(x-2\right)\left(2x-5\right)+\left(x+1\right)\times 4=\left(x+1\right)\left(x+2\right)
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ ಯಾವುದೇ -2,-1,2 ಮೌಲ್ಯಗಳಿಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು \left(x-2\right)\left(x+1\right)\left(x+2\right), x^{2}+3x+2,x^{2}-4,x-2 ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
2x^{2}-9x+10+\left(x+1\right)\times 4=\left(x+1\right)\left(x+2\right)
2x-5 ರಿಂದು x-2 ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
2x^{2}-9x+10+4x+4=\left(x+1\right)\left(x+2\right)
4 ದಿಂದ x+1 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
2x^{2}-5x+10+4=\left(x+1\right)\left(x+2\right)
-5x ಪಡೆದುಕೊಳ್ಳಲು -9x ಮತ್ತು 4x ಕೂಡಿಸಿ.
2x^{2}-5x+14=\left(x+1\right)\left(x+2\right)
14 ಪಡೆದುಕೊಳ್ಳಲು 10 ಮತ್ತು 4 ಸೇರಿಸಿ.
2x^{2}-5x+14=x^{2}+3x+2
x+2 ರಿಂದು x+1 ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
2x^{2}-5x+14-x^{2}=3x+2
ಎರಡೂ ಕಡೆಗಳಿಂದ x^{2} ಕಳೆಯಿರಿ.
x^{2}-5x+14=3x+2
x^{2} ಪಡೆದುಕೊಳ್ಳಲು 2x^{2} ಮತ್ತು -x^{2} ಕೂಡಿಸಿ.
x^{2}-5x+14-3x=2
ಎರಡೂ ಕಡೆಗಳಿಂದ 3x ಕಳೆಯಿರಿ.
x^{2}-8x+14=2
-8x ಪಡೆದುಕೊಳ್ಳಲು -5x ಮತ್ತು -3x ಕೂಡಿಸಿ.
x^{2}-8x=2-14
ಎರಡೂ ಕಡೆಗಳಿಂದ 14 ಕಳೆಯಿರಿ.
x^{2}-8x=-12
-12 ಪಡೆದುಕೊಳ್ಳಲು 2 ದಿಂದ 14 ಕಳೆಯಿರಿ.
x^{2}-8x+\left(-4\right)^{2}=-12+\left(-4\right)^{2}
-4 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -8 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -4 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-8x+16=-12+16
ವರ್ಗ -4.
x^{2}-8x+16=4
16 ಗೆ -12 ಸೇರಿಸಿ.
\left(x-4\right)^{2}=4
ಅಪವರ್ತನ x^{2}-8x+16. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-4\right)^{2}}=\sqrt{4}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-4=2 x-4=-2
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=6 x=2
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 4 ಸೇರಿಸಿ.
x=6
x ವೇರಿಯೇಬಲ್ 2 ಗೆ ಸಮಾನಾಗಿರಬಾರದು.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}