ಮೌಲ್ಯಮಾಪನ
\frac{1}{r-1}
ವ್ಯತ್ಯಾಸ w.r.t. r
-\frac{1}{\left(r-1\right)^{2}}
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
\frac{2r}{\left(r-1\right)\left(r+1\right)}-\frac{1}{r+1}
ಅಪವರ್ತನ r^{2}-1.
\frac{2r}{\left(r-1\right)\left(r+1\right)}-\frac{r-1}{\left(r-1\right)\left(r+1\right)}
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. \left(r-1\right)\left(r+1\right) ಮತ್ತು r+1 ಇವುಗಳ ಕನಿಷ್ಠ ಅಪವರ್ತ್ಯವು \left(r-1\right)\left(r+1\right) ಆಗಿದೆ. \frac{r-1}{r-1} ಅನ್ನು \frac{1}{r+1} ಬಾರಿ ಗುಣಿಸಿ.
\frac{2r-\left(r-1\right)}{\left(r-1\right)\left(r+1\right)}
\frac{2r}{\left(r-1\right)\left(r+1\right)} ಮತ್ತು \frac{r-1}{\left(r-1\right)\left(r+1\right)} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಕಳೆಯಿರಿ.
\frac{2r-r+1}{\left(r-1\right)\left(r+1\right)}
2r-\left(r-1\right) ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{r+1}{\left(r-1\right)\left(r+1\right)}
2r-r+1 ನಲ್ಲಿ ಅಂಶಗಳಂತೆ ಕೂಡಿಸಿ.
\frac{1}{r-1}
ಗಣಕ ಮತ್ತು ಛೇದ ಎರಡರಲ್ಲೂ r+1 ರದ್ದುಗೊಳಿಸಿ.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{2r}{\left(r-1\right)\left(r+1\right)}-\frac{1}{r+1})
ಅಪವರ್ತನ r^{2}-1.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{2r}{\left(r-1\right)\left(r+1\right)}-\frac{r-1}{\left(r-1\right)\left(r+1\right)})
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. \left(r-1\right)\left(r+1\right) ಮತ್ತು r+1 ಇವುಗಳ ಕನಿಷ್ಠ ಅಪವರ್ತ್ಯವು \left(r-1\right)\left(r+1\right) ಆಗಿದೆ. \frac{r-1}{r-1} ಅನ್ನು \frac{1}{r+1} ಬಾರಿ ಗುಣಿಸಿ.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{2r-\left(r-1\right)}{\left(r-1\right)\left(r+1\right)})
\frac{2r}{\left(r-1\right)\left(r+1\right)} ಮತ್ತು \frac{r-1}{\left(r-1\right)\left(r+1\right)} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಕಳೆಯಿರಿ.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{2r-r+1}{\left(r-1\right)\left(r+1\right)})
2r-\left(r-1\right) ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{r+1}{\left(r-1\right)\left(r+1\right)})
2r-r+1 ನಲ್ಲಿ ಅಂಶಗಳಂತೆ ಕೂಡಿಸಿ.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{1}{r-1})
ಗಣಕ ಮತ್ತು ಛೇದ ಎರಡರಲ್ಲೂ r+1 ರದ್ದುಗೊಳಿಸಿ.
-\left(r^{1}-1\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}r}(r^{1}-1)
ಒಂದು ವೇಳೆ F ಎರಡು ವ್ಯತ್ಯಾಸವಿಲ್ಲದ ಕಾರ್ಯಗಳು f\left(u\right) ಮತ್ತು u=g\left(x\right) ನ ಸಂಯೋಜನೆಯಾಗಿದ್ದರೆ, ಅದು F\left(x\right)=f\left(g\left(x\right)\right) ಆಗಿರಬಹುದು, ತದನಂತರ F ನ ವ್ಯುತ್ಪನ್ನವು u ಸಮಯದ ಜೊತೆಗಿನ f ವ್ಯುತ್ಪನ್ನ ಆಗಿರುತ್ತದೆ ಮತ್ತು x ಜೊತೆಗಿನ g ನ ವ್ಯುತ್ಪನ್ನವು \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right) ಆಗಿರುತ್ತದೆ.
-\left(r^{1}-1\right)^{-2}r^{1-1}
ಬಹುಪದೀಯದ ವ್ಯುತ್ಪತ್ತಿಯು ಅದರ ಪದಗಳ ವ್ಯುತ್ಪತ್ತಿಗಳ ಮೊತ್ತವಾಗಿದೆ. ಯಾವುದೇ ಸ್ಥಿರ ಪದದ ವ್ಯುತ್ಪತ್ತಿಯು 0 ಆಗಿದೆ. ax^{n} ನ ವ್ಯುತ್ಪತ್ತಿಯು nax^{n-1} ಆಗಿದೆ.
-r^{0}\left(r^{1}-1\right)^{-2}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
-r^{0}\left(r-1\right)^{-2}
ಯಾವುದೇ ಪದಕ್ಕೆ t, t^{1}=t.
-\left(r-1\right)^{-2}
0, t^{0}=1 ಹೊರತುಪಡಿಸಿ ಯಾವುದೇ ಪದ t ಗೆ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}