ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಮೌಲ್ಯಮಾಪನ
Tick mark Image
ವಿಸ್ತರಿಸು
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

\frac{\left(2n^{2}-n-1\right)n}{2n\left(n+1\right)}-\frac{\left(2\left(n-1\right)^{2}-\left(n-1\right)-1\right)\left(n+1\right)}{2n\left(n+1\right)}
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. 2\left(n+1\right) ಮತ್ತು 2n ಇವುಗಳ ಕನಿಷ್ಠ ಅಪವರ್ತ್ಯವು 2n\left(n+1\right) ಆಗಿದೆ. \frac{n}{n} ಅನ್ನು \frac{2n^{2}-n-1}{2\left(n+1\right)} ಬಾರಿ ಗುಣಿಸಿ. \frac{n+1}{n+1} ಅನ್ನು \frac{2\left(n-1\right)^{2}-\left(n-1\right)-1}{2n} ಬಾರಿ ಗುಣಿಸಿ.
\frac{\left(2n^{2}-n-1\right)n-\left(2\left(n-1\right)^{2}-\left(n-1\right)-1\right)\left(n+1\right)}{2n\left(n+1\right)}
\frac{\left(2n^{2}-n-1\right)n}{2n\left(n+1\right)} ಮತ್ತು \frac{\left(2\left(n-1\right)^{2}-\left(n-1\right)-1\right)\left(n+1\right)}{2n\left(n+1\right)} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಕಳೆಯಿರಿ.
\frac{2n^{3}-n^{2}-n-2n^{3}+2n^{2}+2n-2+n^{2}-1+n+1}{2n\left(n+1\right)}
\left(2n^{2}-n-1\right)n-\left(2\left(n-1\right)^{2}-\left(n-1\right)-1\right)\left(n+1\right) ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{2n^{2}+2n-2}{2n\left(n+1\right)}
2n^{3}-n^{2}-n-2n^{3}+2n^{2}+2n-2+n^{2}-1+n+1 ನಲ್ಲಿ ಅಂಶಗಳಂತೆ ಕೂಡಿಸಿ.
\frac{2\left(n-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(n-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)}{2n\left(n+1\right)}
ಈಗಾಗಲೇ \frac{2n^{2}+2n-2}{2n\left(n+1\right)} ನಲ್ಲಿ ಅಪವರ್ತನಗೊಳಿಸದ ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\frac{\left(n-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(n-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)}{n\left(n+1\right)}
ಗಣಕ ಮತ್ತು ಛೇದ ಎರಡರಲ್ಲೂ 2 ರದ್ದುಗೊಳಿಸಿ.
\frac{\left(n-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(n-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)}{n^{2}+n}
n\left(n+1\right) ವಿಸ್ತರಿಸಿ.
\frac{\left(n+\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)\left(n-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)}{n^{2}+n}
-\frac{1}{2}\sqrt{5}-\frac{1}{2} ವಿರುದ್ಧವನ್ನು ಹುಡುಕಲು, ಪ್ರತಿ ಪದದ ವಿರುದ್ಧ ಪದವನ್ನು ಹುಡುಕಿ.
\frac{\left(n+\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)\left(n-\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)}{n^{2}+n}
\frac{1}{2}\sqrt{5}-\frac{1}{2} ವಿರುದ್ಧವನ್ನು ಹುಡುಕಲು, ಪ್ರತಿ ಪದದ ವಿರುದ್ಧ ಪದವನ್ನು ಹುಡುಕಿ.
\frac{n^{2}+n-\frac{1}{4}\left(\sqrt{5}\right)^{2}+\frac{1}{4}}{n^{2}+n}
n-\frac{1}{2}\sqrt{5}+\frac{1}{2} ರಿಂದು n+\frac{1}{2}\sqrt{5}+\frac{1}{2} ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
\frac{n^{2}+n-\frac{1}{4}\times 5+\frac{1}{4}}{n^{2}+n}
\sqrt{5} ವರ್ಗವು 5 ಆಗಿದೆ.
\frac{n^{2}+n-\frac{5}{4}+\frac{1}{4}}{n^{2}+n}
-\frac{5}{4} ಪಡೆದುಕೊಳ್ಳಲು -\frac{1}{4} ಮತ್ತು 5 ಗುಣಿಸಿ.
\frac{n^{2}+n-1}{n^{2}+n}
-1 ಪಡೆದುಕೊಳ್ಳಲು -\frac{5}{4} ಮತ್ತು \frac{1}{4} ಸೇರಿಸಿ.
\frac{\left(2n^{2}-n-1\right)n}{2n\left(n+1\right)}-\frac{\left(2\left(n-1\right)^{2}-\left(n-1\right)-1\right)\left(n+1\right)}{2n\left(n+1\right)}
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. 2\left(n+1\right) ಮತ್ತು 2n ಇವುಗಳ ಕನಿಷ್ಠ ಅಪವರ್ತ್ಯವು 2n\left(n+1\right) ಆಗಿದೆ. \frac{n}{n} ಅನ್ನು \frac{2n^{2}-n-1}{2\left(n+1\right)} ಬಾರಿ ಗುಣಿಸಿ. \frac{n+1}{n+1} ಅನ್ನು \frac{2\left(n-1\right)^{2}-\left(n-1\right)-1}{2n} ಬಾರಿ ಗುಣಿಸಿ.
\frac{\left(2n^{2}-n-1\right)n-\left(2\left(n-1\right)^{2}-\left(n-1\right)-1\right)\left(n+1\right)}{2n\left(n+1\right)}
\frac{\left(2n^{2}-n-1\right)n}{2n\left(n+1\right)} ಮತ್ತು \frac{\left(2\left(n-1\right)^{2}-\left(n-1\right)-1\right)\left(n+1\right)}{2n\left(n+1\right)} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಕಳೆಯಿರಿ.
\frac{2n^{3}-n^{2}-n-2n^{3}+2n^{2}+2n-2+n^{2}-1+n+1}{2n\left(n+1\right)}
\left(2n^{2}-n-1\right)n-\left(2\left(n-1\right)^{2}-\left(n-1\right)-1\right)\left(n+1\right) ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{2n^{2}+2n-2}{2n\left(n+1\right)}
2n^{3}-n^{2}-n-2n^{3}+2n^{2}+2n-2+n^{2}-1+n+1 ನಲ್ಲಿ ಅಂಶಗಳಂತೆ ಕೂಡಿಸಿ.
\frac{2\left(n-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(n-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)}{2n\left(n+1\right)}
ಈಗಾಗಲೇ \frac{2n^{2}+2n-2}{2n\left(n+1\right)} ನಲ್ಲಿ ಅಪವರ್ತನಗೊಳಿಸದ ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\frac{\left(n-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(n-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)}{n\left(n+1\right)}
ಗಣಕ ಮತ್ತು ಛೇದ ಎರಡರಲ್ಲೂ 2 ರದ್ದುಗೊಳಿಸಿ.
\frac{\left(n-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(n-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)}{n^{2}+n}
n\left(n+1\right) ವಿಸ್ತರಿಸಿ.
\frac{\left(n+\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)\left(n-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)}{n^{2}+n}
-\frac{1}{2}\sqrt{5}-\frac{1}{2} ವಿರುದ್ಧವನ್ನು ಹುಡುಕಲು, ಪ್ರತಿ ಪದದ ವಿರುದ್ಧ ಪದವನ್ನು ಹುಡುಕಿ.
\frac{\left(n+\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)\left(n-\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)}{n^{2}+n}
\frac{1}{2}\sqrt{5}-\frac{1}{2} ವಿರುದ್ಧವನ್ನು ಹುಡುಕಲು, ಪ್ರತಿ ಪದದ ವಿರುದ್ಧ ಪದವನ್ನು ಹುಡುಕಿ.
\frac{n^{2}+n-\frac{1}{4}\left(\sqrt{5}\right)^{2}+\frac{1}{4}}{n^{2}+n}
n-\frac{1}{2}\sqrt{5}+\frac{1}{2} ರಿಂದು n+\frac{1}{2}\sqrt{5}+\frac{1}{2} ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
\frac{n^{2}+n-\frac{1}{4}\times 5+\frac{1}{4}}{n^{2}+n}
\sqrt{5} ವರ್ಗವು 5 ಆಗಿದೆ.
\frac{n^{2}+n-\frac{5}{4}+\frac{1}{4}}{n^{2}+n}
-\frac{5}{4} ಪಡೆದುಕೊಳ್ಳಲು -\frac{1}{4} ಮತ್ತು 5 ಗುಣಿಸಿ.
\frac{n^{2}+n-1}{n^{2}+n}
-1 ಪಡೆದುಕೊಳ್ಳಲು -\frac{5}{4} ಮತ್ತು \frac{1}{4} ಸೇರಿಸಿ.