ಮೌಲ್ಯಮಾಪನ
\frac{4}{a-b}
ವಿಸ್ತರಿಸು
\frac{4}{a-b}
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
\frac{2a+2b}{b}\left(\frac{a+b}{\left(a+b\right)\left(a-b\right)}-\frac{a-b}{\left(a+b\right)\left(a-b\right)}\right)
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. a-b ಮತ್ತು a+b ಇವುಗಳ ಕನಿಷ್ಠ ಅಪವರ್ತ್ಯವು \left(a+b\right)\left(a-b\right) ಆಗಿದೆ. \frac{a+b}{a+b} ಅನ್ನು \frac{1}{a-b} ಬಾರಿ ಗುಣಿಸಿ. \frac{a-b}{a-b} ಅನ್ನು \frac{1}{a+b} ಬಾರಿ ಗುಣಿಸಿ.
\frac{2a+2b}{b}\times \frac{a+b-\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}
\frac{a+b}{\left(a+b\right)\left(a-b\right)} ಮತ್ತು \frac{a-b}{\left(a+b\right)\left(a-b\right)} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಕಳೆಯಿರಿ.
\frac{2a+2b}{b}\times \frac{a+b-a+b}{\left(a+b\right)\left(a-b\right)}
a+b-\left(a-b\right) ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{2a+2b}{b}\times \frac{2b}{\left(a+b\right)\left(a-b\right)}
a+b-a+b ನಲ್ಲಿ ಅಂಶಗಳಂತೆ ಕೂಡಿಸಿ.
\frac{\left(2a+2b\right)\times 2b}{b\left(a+b\right)\left(a-b\right)}
ಸಂಖ್ಯಾಕಾರ ಸಮಯ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದ ಸಮಯ ಛೇದವನ್ನು ಗುಣಿಸುವ ಮೂಲಕ \frac{2b}{\left(a+b\right)\left(a-b\right)} ಅನ್ನು \frac{2a+2b}{b} ಬಾರಿ ಗುಣಿಸಿ.
\frac{2\left(2a+2b\right)}{\left(a+b\right)\left(a-b\right)}
ಗಣಕ ಮತ್ತು ಛೇದ ಎರಡರಲ್ಲೂ b ರದ್ದುಗೊಳಿಸಿ.
\frac{2^{2}\left(a+b\right)}{\left(a+b\right)\left(a-b\right)}
ಈಗಾಗಲೇ ಅಪವರ್ತನಗೊಳಿಸದ ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\frac{2^{2}}{a-b}
ಗಣಕ ಮತ್ತು ಛೇದ ಎರಡರಲ್ಲೂ a+b ರದ್ದುಗೊಳಿಸಿ.
\frac{4}{a-b}
ಅಭಿವ್ಯಕ್ತಿಯನ್ನು ವಿಸ್ತರಿಸಿ.
\frac{2a+2b}{b}\left(\frac{a+b}{\left(a+b\right)\left(a-b\right)}-\frac{a-b}{\left(a+b\right)\left(a-b\right)}\right)
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. a-b ಮತ್ತು a+b ಇವುಗಳ ಕನಿಷ್ಠ ಅಪವರ್ತ್ಯವು \left(a+b\right)\left(a-b\right) ಆಗಿದೆ. \frac{a+b}{a+b} ಅನ್ನು \frac{1}{a-b} ಬಾರಿ ಗುಣಿಸಿ. \frac{a-b}{a-b} ಅನ್ನು \frac{1}{a+b} ಬಾರಿ ಗುಣಿಸಿ.
\frac{2a+2b}{b}\times \frac{a+b-\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}
\frac{a+b}{\left(a+b\right)\left(a-b\right)} ಮತ್ತು \frac{a-b}{\left(a+b\right)\left(a-b\right)} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಕಳೆಯಿರಿ.
\frac{2a+2b}{b}\times \frac{a+b-a+b}{\left(a+b\right)\left(a-b\right)}
a+b-\left(a-b\right) ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{2a+2b}{b}\times \frac{2b}{\left(a+b\right)\left(a-b\right)}
a+b-a+b ನಲ್ಲಿ ಅಂಶಗಳಂತೆ ಕೂಡಿಸಿ.
\frac{\left(2a+2b\right)\times 2b}{b\left(a+b\right)\left(a-b\right)}
ಸಂಖ್ಯಾಕಾರ ಸಮಯ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದ ಸಮಯ ಛೇದವನ್ನು ಗುಣಿಸುವ ಮೂಲಕ \frac{2b}{\left(a+b\right)\left(a-b\right)} ಅನ್ನು \frac{2a+2b}{b} ಬಾರಿ ಗುಣಿಸಿ.
\frac{2\left(2a+2b\right)}{\left(a+b\right)\left(a-b\right)}
ಗಣಕ ಮತ್ತು ಛೇದ ಎರಡರಲ್ಲೂ b ರದ್ದುಗೊಳಿಸಿ.
\frac{2^{2}\left(a+b\right)}{\left(a+b\right)\left(a-b\right)}
ಈಗಾಗಲೇ ಅಪವರ್ತನಗೊಳಿಸದ ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\frac{2^{2}}{a-b}
ಗಣಕ ಮತ್ತು ಛೇದ ಎರಡರಲ್ಲೂ a+b ರದ್ದುಗೊಳಿಸಿ.
\frac{4}{a-b}
ಅಭಿವ್ಯಕ್ತಿಯನ್ನು ವಿಸ್ತರಿಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}