ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಮೌಲ್ಯಮಾಪನ
Tick mark Image
ನೈಜ ಭಾಗ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

\frac{\left(2-i\right)\left(4-3i\right)}{\left(4+3i\right)\left(4-3i\right)}
ಛೇದದ ಸಂಕೀರ್ಣ ಸಂಯುಗ್ಮದ ಮೂಲಕ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದ ಎರಡನ್ನೂ ಗುಣಿಸಿ, 4-3i.
\frac{\left(2-i\right)\left(4-3i\right)}{4^{2}-3^{2}i^{2}}
ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2-i\right)\left(4-3i\right)}{25}
ವ್ಯಾಖ್ಯಾನದ ಮೂಲಕ, i^{2} ಎನ್ನುವುದು -1 ಆಗಿದೆ. ಛೇದವನ್ನು ಲೆಕ್ಕಹಾಕಿ.
\frac{2\times 4+2\times \left(-3i\right)-i\times 4-\left(-3i^{2}\right)}{25}
ನೀವು ದ್ವಿಪದಗಳನ್ನು ಗುಣಿಸಿದಂತೆ 2-i ಮತ್ತು 4-3i ಸಂಕೀರ್ಣ ಸಂಖ್ಯೆಗಳನ್ನು ಗುಣಿಸಿ.
\frac{2\times 4+2\times \left(-3i\right)-i\times 4-\left(-3\left(-1\right)\right)}{25}
ವ್ಯಾಖ್ಯಾನದ ಮೂಲಕ, i^{2} ಎನ್ನುವುದು -1 ಆಗಿದೆ.
\frac{8-6i-4i-3}{25}
2\times 4+2\times \left(-3i\right)-i\times 4-\left(-3\left(-1\right)\right) ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{8-3+\left(-6-4\right)i}{25}
8-6i-4i-3 ನಲ್ಲಿ ನೈಜ ಮತ್ತು ಕಾಲ್ಪನಿಕ ಭಾಗಗಳನ್ನು ಕೂಡಿಸಿ.
\frac{5-10i}{25}
8-3+\left(-6-4\right)i ನಲ್ಲಿ ಸಂಕಲನ ಮಾಡಿ.
\frac{1}{5}-\frac{2}{5}i
\frac{1}{5}-\frac{2}{5}i ಪಡೆಯಲು 25 ರಿಂದ 5-10i ವಿಭಾಗಿಸಿ.
Re(\frac{\left(2-i\right)\left(4-3i\right)}{\left(4+3i\right)\left(4-3i\right)})
\frac{2-i}{4+3i} ನ ಗಣಕ ಮತ್ತು ಛೇದವನ್ನು, 4-3i ಗಣಕದ ಸಂಕೀರ್ಣ ಸಂಯೋಗದಿಂದ ಗುಣಿಸಿ.
Re(\frac{\left(2-i\right)\left(4-3i\right)}{4^{2}-3^{2}i^{2}})
ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(2-i\right)\left(4-3i\right)}{25})
ವ್ಯಾಖ್ಯಾನದ ಮೂಲಕ, i^{2} ಎನ್ನುವುದು -1 ಆಗಿದೆ. ಛೇದವನ್ನು ಲೆಕ್ಕಹಾಕಿ.
Re(\frac{2\times 4+2\times \left(-3i\right)-i\times 4-\left(-3i^{2}\right)}{25})
ನೀವು ದ್ವಿಪದಗಳನ್ನು ಗುಣಿಸಿದಂತೆ 2-i ಮತ್ತು 4-3i ಸಂಕೀರ್ಣ ಸಂಖ್ಯೆಗಳನ್ನು ಗುಣಿಸಿ.
Re(\frac{2\times 4+2\times \left(-3i\right)-i\times 4-\left(-3\left(-1\right)\right)}{25})
ವ್ಯಾಖ್ಯಾನದ ಮೂಲಕ, i^{2} ಎನ್ನುವುದು -1 ಆಗಿದೆ.
Re(\frac{8-6i-4i-3}{25})
2\times 4+2\times \left(-3i\right)-i\times 4-\left(-3\left(-1\right)\right) ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
Re(\frac{8-3+\left(-6-4\right)i}{25})
8-6i-4i-3 ನಲ್ಲಿ ನೈಜ ಮತ್ತು ಕಾಲ್ಪನಿಕ ಭಾಗಗಳನ್ನು ಕೂಡಿಸಿ.
Re(\frac{5-10i}{25})
8-3+\left(-6-4\right)i ನಲ್ಲಿ ಸಂಕಲನ ಮಾಡಿ.
Re(\frac{1}{5}-\frac{2}{5}i)
\frac{1}{5}-\frac{2}{5}i ಪಡೆಯಲು 25 ರಿಂದ 5-10i ವಿಭಾಗಿಸಿ.
\frac{1}{5}
\frac{1}{5}-\frac{2}{5}i ನ ನೈಜ ಭಾಗವು \frac{1}{5} ಆಗಿದೆ.