ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಮೌಲ್ಯಮಾಪನ
Tick mark Image
ವಿಸ್ತರಿಸು
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

\frac{\frac{8-5a}{2+7a+6}}{\frac{2a+10}{a+1}-a-1}+\frac{1}{a+3}
8 ಪಡೆದುಕೊಳ್ಳಲು 2 ಮತ್ತು 6 ಸೇರಿಸಿ.
\frac{\frac{8-5a}{8+7a}}{\frac{2a+10}{a+1}-a-1}+\frac{1}{a+3}
8 ಪಡೆದುಕೊಳ್ಳಲು 2 ಮತ್ತು 6 ಸೇರಿಸಿ.
\frac{\frac{8-5a}{8+7a}}{\frac{2a+10}{a+1}+\frac{\left(-a-1\right)\left(a+1\right)}{a+1}}+\frac{1}{a+3}
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. \frac{a+1}{a+1} ಅನ್ನು -a-1 ಬಾರಿ ಗುಣಿಸಿ.
\frac{\frac{8-5a}{8+7a}}{\frac{2a+10+\left(-a-1\right)\left(a+1\right)}{a+1}}+\frac{1}{a+3}
\frac{2a+10}{a+1} ಮತ್ತು \frac{\left(-a-1\right)\left(a+1\right)}{a+1} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಸೇರಿಸಿ.
\frac{\frac{8-5a}{8+7a}}{\frac{2a+10-a^{2}-a-a-1}{a+1}}+\frac{1}{a+3}
2a+10+\left(-a-1\right)\left(a+1\right) ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{\frac{8-5a}{8+7a}}{\frac{9-a^{2}}{a+1}}+\frac{1}{a+3}
2a+10-a^{2}-a-a-1 ನಲ್ಲಿ ಅಂಶಗಳಂತೆ ಕೂಡಿಸಿ.
\frac{\left(8-5a\right)\left(a+1\right)}{\left(8+7a\right)\left(9-a^{2}\right)}+\frac{1}{a+3}
\frac{9-a^{2}}{a+1} ನ ವ್ಯುತ್ಕ್ರಮದಿಂದ \frac{8-5a}{8+7a} ಗುಣಿಸುವ ಮೂಲಕ \frac{9-a^{2}}{a+1} ದಿಂದ \frac{8-5a}{8+7a} ಭಾಗಿಸಿ.
\frac{\left(8-5a\right)\left(a+1\right)}{\left(a-3\right)\left(-a-3\right)\left(7a+8\right)}+\frac{1}{a+3}
ಅಪವರ್ತನ \left(8+7a\right)\left(9-a^{2}\right).
\frac{-\left(8-5a\right)\left(a+1\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}+\frac{\left(a-3\right)\left(7a+8\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. \left(a-3\right)\left(-a-3\right)\left(7a+8\right) ಮತ್ತು a+3 ಇವುಗಳ ಕನಿಷ್ಠ ಅಪವರ್ತ್ಯವು \left(a-3\right)\left(a+3\right)\left(7a+8\right) ಆಗಿದೆ. \frac{-1}{-1} ಅನ್ನು \frac{\left(8-5a\right)\left(a+1\right)}{\left(a-3\right)\left(-a-3\right)\left(7a+8\right)} ಬಾರಿ ಗುಣಿಸಿ. \frac{\left(a-3\right)\left(7a+8\right)}{\left(a-3\right)\left(7a+8\right)} ಅನ್ನು \frac{1}{a+3} ಬಾರಿ ಗುಣಿಸಿ.
\frac{-\left(8-5a\right)\left(a+1\right)+\left(a-3\right)\left(7a+8\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}
\frac{-\left(8-5a\right)\left(a+1\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)} ಮತ್ತು \frac{\left(a-3\right)\left(7a+8\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಸೇರಿಸಿ.
\frac{-8a-8+5a^{2}+5a+7a^{2}+8a-21a-24}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}
-\left(8-5a\right)\left(a+1\right)+\left(a-3\right)\left(7a+8\right) ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{-16a-32+12a^{2}}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}
-8a-8+5a^{2}+5a+7a^{2}+8a-21a-24 ನಲ್ಲಿ ಅಂಶಗಳಂತೆ ಕೂಡಿಸಿ.
\frac{-16a-32+12a^{2}}{7a^{3}+8a^{2}-63a-72}
\left(a-3\right)\left(a+3\right)\left(7a+8\right) ವಿಸ್ತರಿಸಿ.
\frac{\frac{8-5a}{2+7a+6}}{\frac{2a+10}{a+1}-a-1}+\frac{1}{a+3}
8 ಪಡೆದುಕೊಳ್ಳಲು 2 ಮತ್ತು 6 ಸೇರಿಸಿ.
\frac{\frac{8-5a}{8+7a}}{\frac{2a+10}{a+1}-a-1}+\frac{1}{a+3}
8 ಪಡೆದುಕೊಳ್ಳಲು 2 ಮತ್ತು 6 ಸೇರಿಸಿ.
\frac{\frac{8-5a}{8+7a}}{\frac{2a+10}{a+1}+\frac{\left(-a-1\right)\left(a+1\right)}{a+1}}+\frac{1}{a+3}
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. \frac{a+1}{a+1} ಅನ್ನು -a-1 ಬಾರಿ ಗುಣಿಸಿ.
\frac{\frac{8-5a}{8+7a}}{\frac{2a+10+\left(-a-1\right)\left(a+1\right)}{a+1}}+\frac{1}{a+3}
\frac{2a+10}{a+1} ಮತ್ತು \frac{\left(-a-1\right)\left(a+1\right)}{a+1} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಸೇರಿಸಿ.
\frac{\frac{8-5a}{8+7a}}{\frac{2a+10-a^{2}-a-a-1}{a+1}}+\frac{1}{a+3}
2a+10+\left(-a-1\right)\left(a+1\right) ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{\frac{8-5a}{8+7a}}{\frac{9-a^{2}}{a+1}}+\frac{1}{a+3}
2a+10-a^{2}-a-a-1 ನಲ್ಲಿ ಅಂಶಗಳಂತೆ ಕೂಡಿಸಿ.
\frac{\left(8-5a\right)\left(a+1\right)}{\left(8+7a\right)\left(9-a^{2}\right)}+\frac{1}{a+3}
\frac{9-a^{2}}{a+1} ನ ವ್ಯುತ್ಕ್ರಮದಿಂದ \frac{8-5a}{8+7a} ಗುಣಿಸುವ ಮೂಲಕ \frac{9-a^{2}}{a+1} ದಿಂದ \frac{8-5a}{8+7a} ಭಾಗಿಸಿ.
\frac{\left(8-5a\right)\left(a+1\right)}{\left(a-3\right)\left(-a-3\right)\left(7a+8\right)}+\frac{1}{a+3}
ಅಪವರ್ತನ \left(8+7a\right)\left(9-a^{2}\right).
\frac{-\left(8-5a\right)\left(a+1\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}+\frac{\left(a-3\right)\left(7a+8\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. \left(a-3\right)\left(-a-3\right)\left(7a+8\right) ಮತ್ತು a+3 ಇವುಗಳ ಕನಿಷ್ಠ ಅಪವರ್ತ್ಯವು \left(a-3\right)\left(a+3\right)\left(7a+8\right) ಆಗಿದೆ. \frac{-1}{-1} ಅನ್ನು \frac{\left(8-5a\right)\left(a+1\right)}{\left(a-3\right)\left(-a-3\right)\left(7a+8\right)} ಬಾರಿ ಗುಣಿಸಿ. \frac{\left(a-3\right)\left(7a+8\right)}{\left(a-3\right)\left(7a+8\right)} ಅನ್ನು \frac{1}{a+3} ಬಾರಿ ಗುಣಿಸಿ.
\frac{-\left(8-5a\right)\left(a+1\right)+\left(a-3\right)\left(7a+8\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}
\frac{-\left(8-5a\right)\left(a+1\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)} ಮತ್ತು \frac{\left(a-3\right)\left(7a+8\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಸೇರಿಸಿ.
\frac{-8a-8+5a^{2}+5a+7a^{2}+8a-21a-24}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}
-\left(8-5a\right)\left(a+1\right)+\left(a-3\right)\left(7a+8\right) ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{-16a-32+12a^{2}}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}
-8a-8+5a^{2}+5a+7a^{2}+8a-21a-24 ನಲ್ಲಿ ಅಂಶಗಳಂತೆ ಕೂಡಿಸಿ.
\frac{-16a-32+12a^{2}}{7a^{3}+8a^{2}-63a-72}
\left(a-3\right)\left(a+3\right)\left(7a+8\right) ವಿಸ್ತರಿಸಿ.