ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಮೌಲ್ಯಮಾಪನ
Tick mark Image
ವ್ಯತ್ಯಾಸ w.r.t. a
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

\frac{2\left(a-2\right)}{\left(a-4\right)\left(a-2\right)}-\frac{3\left(a-4\right)}{\left(a-4\right)\left(a-2\right)}
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. a-4 ಮತ್ತು a-2 ಇವುಗಳ ಕನಿಷ್ಠ ಅಪವರ್ತ್ಯವು \left(a-4\right)\left(a-2\right) ಆಗಿದೆ. \frac{a-2}{a-2} ಅನ್ನು \frac{2}{a-4} ಬಾರಿ ಗುಣಿಸಿ. \frac{a-4}{a-4} ಅನ್ನು \frac{3}{a-2} ಬಾರಿ ಗುಣಿಸಿ.
\frac{2\left(a-2\right)-3\left(a-4\right)}{\left(a-4\right)\left(a-2\right)}
\frac{2\left(a-2\right)}{\left(a-4\right)\left(a-2\right)} ಮತ್ತು \frac{3\left(a-4\right)}{\left(a-4\right)\left(a-2\right)} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಕಳೆಯಿರಿ.
\frac{2a-4-3a+12}{\left(a-4\right)\left(a-2\right)}
2\left(a-2\right)-3\left(a-4\right) ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{-a+8}{\left(a-4\right)\left(a-2\right)}
2a-4-3a+12 ನಲ್ಲಿ ಅಂಶಗಳಂತೆ ಕೂಡಿಸಿ.
\frac{-a+8}{a^{2}-6a+8}
\left(a-4\right)\left(a-2\right) ವಿಸ್ತರಿಸಿ.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{2\left(a-2\right)}{\left(a-4\right)\left(a-2\right)}-\frac{3\left(a-4\right)}{\left(a-4\right)\left(a-2\right)})
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. a-4 ಮತ್ತು a-2 ಇವುಗಳ ಕನಿಷ್ಠ ಅಪವರ್ತ್ಯವು \left(a-4\right)\left(a-2\right) ಆಗಿದೆ. \frac{a-2}{a-2} ಅನ್ನು \frac{2}{a-4} ಬಾರಿ ಗುಣಿಸಿ. \frac{a-4}{a-4} ಅನ್ನು \frac{3}{a-2} ಬಾರಿ ಗುಣಿಸಿ.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{2\left(a-2\right)-3\left(a-4\right)}{\left(a-4\right)\left(a-2\right)})
\frac{2\left(a-2\right)}{\left(a-4\right)\left(a-2\right)} ಮತ್ತು \frac{3\left(a-4\right)}{\left(a-4\right)\left(a-2\right)} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಕಳೆಯಿರಿ.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{2a-4-3a+12}{\left(a-4\right)\left(a-2\right)})
2\left(a-2\right)-3\left(a-4\right) ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{-a+8}{\left(a-4\right)\left(a-2\right)})
2a-4-3a+12 ನಲ್ಲಿ ಅಂಶಗಳಂತೆ ಕೂಡಿಸಿ.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{-a+8}{a^{2}-2a-4a+8})
a-4 ನ ಪ್ರತಿ ಪದವನ್ನು a-2 ನ ಪ್ರತಿ ಪದದೊಂದಿಗೆ ಗುಣಾಕಾರ ಮಾಡುವ ಮೂಲಕ ವಿಭಾಜಕ ಗುಣವನ್ನು ಅನ್ವಯಿಸಿ.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{-a+8}{a^{2}-6a+8})
-6a ಪಡೆದುಕೊಳ್ಳಲು -2a ಮತ್ತು -4a ಕೂಡಿಸಿ.
\frac{\left(a^{2}-6a^{1}+8\right)\frac{\mathrm{d}}{\mathrm{d}a}(-a^{1}+8)-\left(-a^{1}+8\right)\frac{\mathrm{d}}{\mathrm{d}a}(a^{2}-6a^{1}+8)}{\left(a^{2}-6a^{1}+8\right)^{2}}
ಯಾವುದೇ ಎರಡು ವ್ಯತ್ಯಾಸವಿಲ್ಲದ ಕಾರ್ಯಗಳಿಗೆ, ಎರಡು ಕಾರ್ಯಗಳ ಭಾಗಲಬ್ಧ ವ್ಯುತ್ಪನ್ನವು ಸಂಖ್ಯಾಕಾರ ವ್ಯುತ್ಪನ್ನದ ಛೇದದ ಸಮಯವನ್ನು ಛೇದದ ವ್ಯುತ್ಪನ್ನದ ಸಂಖ್ಯಾಕಾರ ಸಮಯದಲ್ಲಿ ವ್ಯವಕಲಿಸುತ್ತದೆ, ಎಲ್ಲವನ್ನು ವರ್ಗಮಾಡಲಾದ ಛೇದದಿಂದ ವಿಭಜಿಸಲಾಗಿದೆ.
\frac{\left(a^{2}-6a^{1}+8\right)\left(-1\right)a^{1-1}-\left(-a^{1}+8\right)\left(2a^{2-1}-6a^{1-1}\right)}{\left(a^{2}-6a^{1}+8\right)^{2}}
ಬಹುಪದೀಯದ ವ್ಯುತ್ಪತ್ತಿಯು ಅದರ ಪದಗಳ ವ್ಯುತ್ಪತ್ತಿಗಳ ಮೊತ್ತವಾಗಿದೆ. ಯಾವುದೇ ಸ್ಥಿರ ಪದದ ವ್ಯುತ್ಪತ್ತಿಯು 0 ಆಗಿದೆ. ax^{n} ನ ವ್ಯುತ್ಪತ್ತಿಯು nax^{n-1} ಆಗಿದೆ.
\frac{\left(a^{2}-6a^{1}+8\right)\left(-1\right)a^{0}-\left(-a^{1}+8\right)\left(2a^{1}-6a^{0}\right)}{\left(a^{2}-6a^{1}+8\right)^{2}}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
\frac{a^{2}\left(-1\right)a^{0}-6a^{1}\left(-1\right)a^{0}+8\left(-1\right)a^{0}-\left(-a^{1}+8\right)\left(2a^{1}-6a^{0}\right)}{\left(a^{2}-6a^{1}+8\right)^{2}}
-a^{0} ಅನ್ನು a^{2}-6a^{1}+8 ಬಾರಿ ಗುಣಿಸಿ.
\frac{a^{2}\left(-1\right)a^{0}-6a^{1}\left(-1\right)a^{0}+8\left(-1\right)a^{0}-\left(-a^{1}\times 2a^{1}-a^{1}\left(-6\right)a^{0}+8\times 2a^{1}+8\left(-6\right)a^{0}\right)}{\left(a^{2}-6a^{1}+8\right)^{2}}
2a^{1}-6a^{0} ಅನ್ನು -a^{1}+8 ಬಾರಿ ಗುಣಿಸಿ.
\frac{-a^{2}-6\left(-1\right)a^{1}+8\left(-1\right)a^{0}-\left(-2a^{1+1}-\left(-6a^{1}\right)+8\times 2a^{1}+8\left(-6\right)a^{0}\right)}{\left(a^{2}-6a^{1}+8\right)^{2}}
ಒಂದೇ ಆಧಾರ ಸಂಖ್ಯೆಯ ಘಾತಗಳನ್ನು ಗುಣಿಸಲು ಅದರ ಘಾತಾಂಕಗಳನ್ನು ಸೇರಿಸಿ.
\frac{-a^{2}+6a^{1}-8a^{0}-\left(-2a^{2}+6a^{1}+16a^{1}-48a^{0}\right)}{\left(a^{2}-6a^{1}+8\right)^{2}}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
\frac{a^{2}-16a^{1}+40a^{0}}{\left(a^{2}-6a^{1}+8\right)^{2}}
ಪದಗಳಂತೆ ಕೂಡಿಸಿ.
\frac{a^{2}-16a+40a^{0}}{\left(a^{2}-6a+8\right)^{2}}
ಯಾವುದೇ ಪದಕ್ಕೆ t, t^{1}=t.
\frac{a^{2}-16a+40\times 1}{\left(a^{2}-6a+8\right)^{2}}
0, t^{0}=1 ಹೊರತುಪಡಿಸಿ ಯಾವುದೇ ಪದ t ಗೆ.
\frac{a^{2}-16a+40}{\left(a^{2}-6a+8\right)^{2}}
t, t\times 1=t ಮತ್ತು 1t=t ಪದಕ್ಕೆ.