ಮೌಲ್ಯಮಾಪನ
\frac{15}{4}=3.75
ಅಪವರ್ತನ
\frac{3 \cdot 5}{2 ^ {2}} = 3\frac{3}{4} = 3.75
ರಸಪ್ರಶ್ನೆ
Arithmetic
5 ಇದೇ ತರಹದ ಪ್ರಶ್ನೆಗಳು:
\frac { 2 } { 3 } + \frac { 5 } { 6 } + 2 \frac { 3 } { 12 }
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
\frac{4}{6}+\frac{5}{6}+\frac{2\times 12+3}{12}
3 ಮತ್ತು 6 ಇವುಗಳ ಕನಿಷ್ಠ ಅಪವರ್ತ್ಯವು 6 ಆಗಿದೆ. 6 ಛೇದದ ಮೂಲಕ \frac{2}{3} ಮತ್ತು \frac{5}{6} ಅನ್ನು ಭಿನ್ನಾಂಕಗಳಿಗೆ ಪರಿವರ್ತಿಸಿ.
\frac{4+5}{6}+\frac{2\times 12+3}{12}
\frac{4}{6} ಮತ್ತು \frac{5}{6} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಸೇರಿಸಿ.
\frac{9}{6}+\frac{2\times 12+3}{12}
9 ಪಡೆದುಕೊಳ್ಳಲು 4 ಮತ್ತು 5 ಸೇರಿಸಿ.
\frac{3}{2}+\frac{2\times 12+3}{12}
3 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{9}{6} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
\frac{3}{2}+\frac{24+3}{12}
24 ಪಡೆದುಕೊಳ್ಳಲು 2 ಮತ್ತು 12 ಗುಣಿಸಿ.
\frac{3}{2}+\frac{27}{12}
27 ಪಡೆದುಕೊಳ್ಳಲು 24 ಮತ್ತು 3 ಸೇರಿಸಿ.
\frac{3}{2}+\frac{9}{4}
3 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{27}{12} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
\frac{6}{4}+\frac{9}{4}
2 ಮತ್ತು 4 ಇವುಗಳ ಕನಿಷ್ಠ ಅಪವರ್ತ್ಯವು 4 ಆಗಿದೆ. 4 ಛೇದದ ಮೂಲಕ \frac{3}{2} ಮತ್ತು \frac{9}{4} ಅನ್ನು ಭಿನ್ನಾಂಕಗಳಿಗೆ ಪರಿವರ್ತಿಸಿ.
\frac{6+9}{4}
\frac{6}{4} ಮತ್ತು \frac{9}{4} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಸೇರಿಸಿ.
\frac{15}{4}
15 ಪಡೆದುಕೊಳ್ಳಲು 6 ಮತ್ತು 9 ಸೇರಿಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}