ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಮೌಲ್ಯಮಾಪನ
Tick mark Image
ಅಪವರ್ತನ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

\frac{\left(2\sqrt{3}-\sqrt{2}\right)\left(2\sqrt{3}-\sqrt{2}\right)}{\left(2\sqrt{3}+\sqrt{2}\right)\left(2\sqrt{3}-\sqrt{2}\right)}
\frac{2\sqrt{3}-\sqrt{2}}{2\sqrt{3}+\sqrt{2}} ಅನ್ನು ಗುಣಿಸುವ ಮೂಲಕ ಛೇದವನ್ನು ಮತ್ತು 2\sqrt{3}-\sqrt{2} ಮೂಲಕ ಛೇದ ಮತ್ತು ಅಂಶವನ್ನು ತರ್ಕಬದ್ಧವಾಗಿಸಿ.
\frac{\left(2\sqrt{3}-\sqrt{2}\right)\left(2\sqrt{3}-\sqrt{2}\right)}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
\left(2\sqrt{3}+\sqrt{2}\right)\left(2\sqrt{3}-\sqrt{2}\right) ಪರಿಗಣಿಸಿ. ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2\sqrt{3}-\sqrt{2}\right)^{2}}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
\left(2\sqrt{3}-\sqrt{2}\right)^{2} ಪಡೆದುಕೊಳ್ಳಲು 2\sqrt{3}-\sqrt{2} ಮತ್ತು 2\sqrt{3}-\sqrt{2} ಗುಣಿಸಿ.
\frac{4\left(\sqrt{3}\right)^{2}-4\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
\left(2\sqrt{3}-\sqrt{2}\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ಬಳಸಿ.
\frac{4\times 3-4\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
\sqrt{3} ವರ್ಗವು 3 ಆಗಿದೆ.
\frac{12-4\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
12 ಪಡೆದುಕೊಳ್ಳಲು 4 ಮತ್ತು 3 ಗುಣಿಸಿ.
\frac{12-4\sqrt{6}+\left(\sqrt{2}\right)^{2}}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
\sqrt{3} ಮತ್ತು \sqrt{2} ಅನ್ನು ಗುಣಿಸಲು, ವರ್ಗಮೂಲದ ಅಡಿಯಲ್ಲಿರುವ ಸಂಖ್ಯೆಯನ್ನು ಗುಣಿಸಿ.
\frac{12-4\sqrt{6}+2}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
\sqrt{2} ವರ್ಗವು 2 ಆಗಿದೆ.
\frac{14-4\sqrt{6}}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
14 ಪಡೆದುಕೊಳ್ಳಲು 12 ಮತ್ತು 2 ಸೇರಿಸಿ.
\frac{14-4\sqrt{6}}{2^{2}\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
\left(2\sqrt{3}\right)^{2} ವಿಸ್ತರಿಸಿ.
\frac{14-4\sqrt{6}}{4\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
2 ನ ಘಾತಕ್ಕೆ 2 ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 4 ಪಡೆಯಿರಿ.
\frac{14-4\sqrt{6}}{4\times 3-\left(\sqrt{2}\right)^{2}}
\sqrt{3} ವರ್ಗವು 3 ಆಗಿದೆ.
\frac{14-4\sqrt{6}}{12-\left(\sqrt{2}\right)^{2}}
12 ಪಡೆದುಕೊಳ್ಳಲು 4 ಮತ್ತು 3 ಗುಣಿಸಿ.
\frac{14-4\sqrt{6}}{12-2}
\sqrt{2} ವರ್ಗವು 2 ಆಗಿದೆ.
\frac{14-4\sqrt{6}}{10}
10 ಪಡೆದುಕೊಳ್ಳಲು 12 ದಿಂದ 2 ಕಳೆಯಿರಿ.