ಮೌಲ್ಯಮಾಪನ
\frac{14\sqrt{3}-6\sqrt{2}}{43}\approx 0.366591394
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
\frac{2\sqrt{3}\left(7-\sqrt{6}\right)}{\left(7+\sqrt{6}\right)\left(7-\sqrt{6}\right)}
\frac{2\sqrt{3}}{7+\sqrt{6}} ಅನ್ನು ಗುಣಿಸುವ ಮೂಲಕ ಛೇದವನ್ನು ಮತ್ತು 7-\sqrt{6} ಮೂಲಕ ಛೇದ ಮತ್ತು ಅಂಶವನ್ನು ತರ್ಕಬದ್ಧವಾಗಿಸಿ.
\frac{2\sqrt{3}\left(7-\sqrt{6}\right)}{7^{2}-\left(\sqrt{6}\right)^{2}}
\left(7+\sqrt{6}\right)\left(7-\sqrt{6}\right) ಪರಿಗಣಿಸಿ. ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\sqrt{3}\left(7-\sqrt{6}\right)}{49-6}
ವರ್ಗ 7. ವರ್ಗ \sqrt{6}.
\frac{2\sqrt{3}\left(7-\sqrt{6}\right)}{43}
43 ಪಡೆದುಕೊಳ್ಳಲು 49 ದಿಂದ 6 ಕಳೆಯಿರಿ.
\frac{14\sqrt{3}-2\sqrt{3}\sqrt{6}}{43}
7-\sqrt{6} ದಿಂದ 2\sqrt{3} ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
\frac{14\sqrt{3}-2\sqrt{3}\sqrt{3}\sqrt{2}}{43}
ಅಪವರ್ತನ 6=3\times 2. ವರ್ಗಮೂಲಗಳ \sqrt{3}\sqrt{2} ಉತ್ಪನ್ನವಾಗಿ \sqrt{3\times 2} ಉತ್ಪನ್ನದ ವರ್ಗಮೂಲವನ್ನು ಪುನಃ ಬರೆಯಿರಿ.
\frac{14\sqrt{3}-2\times 3\sqrt{2}}{43}
3 ಪಡೆದುಕೊಳ್ಳಲು \sqrt{3} ಮತ್ತು \sqrt{3} ಗುಣಿಸಿ.
\frac{14\sqrt{3}-6\sqrt{2}}{43}
-6 ಪಡೆದುಕೊಳ್ಳಲು -2 ಮತ್ತು 3 ಗುಣಿಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}