ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಮೌಲ್ಯಮಾಪನ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

\frac{2\sqrt{3}\left(7-\sqrt{6}\right)}{\left(7+\sqrt{6}\right)\left(7-\sqrt{6}\right)}
\frac{2\sqrt{3}}{7+\sqrt{6}} ಅನ್ನು ಗುಣಿಸುವ ಮೂಲಕ ಛೇದವನ್ನು ಮತ್ತು 7-\sqrt{6} ಮೂಲಕ ಛೇದ ಮತ್ತು ಅಂಶವನ್ನು ತರ್ಕಬದ್ಧವಾಗಿಸಿ.
\frac{2\sqrt{3}\left(7-\sqrt{6}\right)}{7^{2}-\left(\sqrt{6}\right)^{2}}
\left(7+\sqrt{6}\right)\left(7-\sqrt{6}\right) ಪರಿಗಣಿಸಿ. ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\sqrt{3}\left(7-\sqrt{6}\right)}{49-6}
ವರ್ಗ 7. ವರ್ಗ \sqrt{6}.
\frac{2\sqrt{3}\left(7-\sqrt{6}\right)}{43}
43 ಪಡೆದುಕೊಳ್ಳಲು 49 ದಿಂದ 6 ಕಳೆಯಿರಿ.
\frac{14\sqrt{3}-2\sqrt{3}\sqrt{6}}{43}
7-\sqrt{6} ದಿಂದ 2\sqrt{3} ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
\frac{14\sqrt{3}-2\sqrt{3}\sqrt{3}\sqrt{2}}{43}
ಅಪವರ್ತನ 6=3\times 2. ವರ್ಗಮೂಲಗಳ \sqrt{3}\sqrt{2} ಉತ್ಪನ್ನವಾಗಿ \sqrt{3\times 2} ಉತ್ಪನ್ನದ ವರ್ಗಮೂಲವನ್ನು ಪುನಃ ಬರೆಯಿರಿ.
\frac{14\sqrt{3}-2\times 3\sqrt{2}}{43}
3 ಪಡೆದುಕೊಳ್ಳಲು \sqrt{3} ಮತ್ತು \sqrt{3} ಗುಣಿಸಿ.
\frac{14\sqrt{3}-6\sqrt{2}}{43}
-6 ಪಡೆದುಕೊಳ್ಳಲು -2 ಮತ್ತು 3 ಗುಣಿಸಿ.