ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಮೌಲ್ಯಮಾಪನ
Tick mark Image
ನೈಜ ಭಾಗ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

\frac{\left(2+3i\right)\left(-1-i\right)}{\left(-1+i\right)\left(-1-i\right)}
ಛೇದದ ಸಂಕೀರ್ಣ ಸಂಯುಗ್ಮದ ಮೂಲಕ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದ ಎರಡನ್ನೂ ಗುಣಿಸಿ, -1-i.
\frac{\left(2+3i\right)\left(-1-i\right)}{\left(-1\right)^{2}-i^{2}}
ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2+3i\right)\left(-1-i\right)}{2}
ವ್ಯಾಖ್ಯಾನದ ಮೂಲಕ, i^{2} ಎನ್ನುವುದು -1 ಆಗಿದೆ. ಛೇದವನ್ನು ಲೆಕ್ಕಹಾಕಿ.
\frac{2\left(-1\right)+2\left(-i\right)+3i\left(-1\right)+3\left(-1\right)i^{2}}{2}
ನೀವು ದ್ವಿಪದಗಳನ್ನು ಗುಣಿಸಿದಂತೆ 2+3i ಮತ್ತು -1-i ಸಂಕೀರ್ಣ ಸಂಖ್ಯೆಗಳನ್ನು ಗುಣಿಸಿ.
\frac{2\left(-1\right)+2\left(-i\right)+3i\left(-1\right)+3\left(-1\right)\left(-1\right)}{2}
ವ್ಯಾಖ್ಯಾನದ ಮೂಲಕ, i^{2} ಎನ್ನುವುದು -1 ಆಗಿದೆ.
\frac{-2-2i-3i+3}{2}
2\left(-1\right)+2\left(-i\right)+3i\left(-1\right)+3\left(-1\right)\left(-1\right) ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{-2+3+\left(-2-3\right)i}{2}
-2-2i-3i+3 ನಲ್ಲಿ ನೈಜ ಮತ್ತು ಕಾಲ್ಪನಿಕ ಭಾಗಗಳನ್ನು ಕೂಡಿಸಿ.
\frac{1-5i}{2}
-2+3+\left(-2-3\right)i ನಲ್ಲಿ ಸಂಕಲನ ಮಾಡಿ.
\frac{1}{2}-\frac{5}{2}i
\frac{1}{2}-\frac{5}{2}i ಪಡೆಯಲು 2 ರಿಂದ 1-5i ವಿಭಾಗಿಸಿ.
Re(\frac{\left(2+3i\right)\left(-1-i\right)}{\left(-1+i\right)\left(-1-i\right)})
\frac{2+3i}{-1+i} ನ ಗಣಕ ಮತ್ತು ಛೇದವನ್ನು, -1-i ಗಣಕದ ಸಂಕೀರ್ಣ ಸಂಯೋಗದಿಂದ ಗುಣಿಸಿ.
Re(\frac{\left(2+3i\right)\left(-1-i\right)}{\left(-1\right)^{2}-i^{2}})
ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(2+3i\right)\left(-1-i\right)}{2})
ವ್ಯಾಖ್ಯಾನದ ಮೂಲಕ, i^{2} ಎನ್ನುವುದು -1 ಆಗಿದೆ. ಛೇದವನ್ನು ಲೆಕ್ಕಹಾಕಿ.
Re(\frac{2\left(-1\right)+2\left(-i\right)+3i\left(-1\right)+3\left(-1\right)i^{2}}{2})
ನೀವು ದ್ವಿಪದಗಳನ್ನು ಗುಣಿಸಿದಂತೆ 2+3i ಮತ್ತು -1-i ಸಂಕೀರ್ಣ ಸಂಖ್ಯೆಗಳನ್ನು ಗುಣಿಸಿ.
Re(\frac{2\left(-1\right)+2\left(-i\right)+3i\left(-1\right)+3\left(-1\right)\left(-1\right)}{2})
ವ್ಯಾಖ್ಯಾನದ ಮೂಲಕ, i^{2} ಎನ್ನುವುದು -1 ಆಗಿದೆ.
Re(\frac{-2-2i-3i+3}{2})
2\left(-1\right)+2\left(-i\right)+3i\left(-1\right)+3\left(-1\right)\left(-1\right) ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
Re(\frac{-2+3+\left(-2-3\right)i}{2})
-2-2i-3i+3 ನಲ್ಲಿ ನೈಜ ಮತ್ತು ಕಾಲ್ಪನಿಕ ಭಾಗಗಳನ್ನು ಕೂಡಿಸಿ.
Re(\frac{1-5i}{2})
-2+3+\left(-2-3\right)i ನಲ್ಲಿ ಸಂಕಲನ ಮಾಡಿ.
Re(\frac{1}{2}-\frac{5}{2}i)
\frac{1}{2}-\frac{5}{2}i ಪಡೆಯಲು 2 ರಿಂದ 1-5i ವಿಭಾಗಿಸಿ.
\frac{1}{2}
\frac{1}{2}-\frac{5}{2}i ನ ನೈಜ ಭಾಗವು \frac{1}{2} ಆಗಿದೆ.